1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/objectMonitor.inline.hpp"
  44 #include "runtime/osThread.hpp"
  45 #include "runtime/safepointVerifiers.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "runtime/timer.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/dtrace.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/preserveException.hpp"
  57 
  58 // The "core" versions of monitor enter and exit reside in this file.
  59 // The interpreter and compilers contain specialized transliterated
  60 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  61 // for instance.  If you make changes here, make sure to modify the
  62 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  63 //
  64 // -----------------------------------------------------------------------------
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = NULL;                                                      \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  76   if (klassname != NULL) {                                                 \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                             \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                            (uintptr_t)(monitor), bytes, len, (millis));    \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  93 
  94 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  95   {                                                                        \
  96     if (DTraceMonitorProbes) {                                             \
  97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  98       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  99                                     (uintptr_t)(monitor), bytes, len);     \
 100     }                                                                      \
 101   }
 102 
 103 #else //  ndef DTRACE_ENABLED
 104 
 105 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 106 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 107 
 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedObjectMonitor* ObjectSynchronizer::g_block_list = NULL;
 121 
 122 struct ObjectMonitorListGlobals {
 123   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 124   // These are highly shared list related variables.
 125   // To avoid false-sharing they need to be the sole occupants of a cache line.
 126 
 127   // Global ObjectMonitor free list. Newly allocated and deflated
 128   // ObjectMonitors are prepended here.
 129   ObjectMonitor* _free_list;
 130   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 131 
 132   // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 133   // ObjectMonitors on its per-thread in-use list are prepended here.
 134   ObjectMonitor* _in_use_list;
 135   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 136 
 137   int _free_count;    // # on free_list
 138   DEFINE_PAD_MINUS_SIZE(3, OM_CACHE_LINE_SIZE, sizeof(int));
 139 
 140   int _in_use_count;  // # on in_use_list
 141   DEFINE_PAD_MINUS_SIZE(4, OM_CACHE_LINE_SIZE, sizeof(int));
 142 
 143   int _population;    // # Extant -- in circulation
 144   DEFINE_PAD_MINUS_SIZE(5, OM_CACHE_LINE_SIZE, sizeof(int));
 145 };
 146 static ObjectMonitorListGlobals om_list_globals;
 147 
 148 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 149 
 150 
 151 // =====================> Spin-lock functions
 152 
 153 // ObjectMonitors are not lockable outside of this file. We use spin-locks
 154 // implemented using a bit in the _next_om field instead of the heavier
 155 // weight locking mechanisms for faster list management.
 156 
 157 #define OM_LOCK_BIT 0x1
 158 
 159 // Return true if the ObjectMonitor is locked.
 160 // Otherwise returns false.
 161 static bool is_locked(ObjectMonitor* om) {
 162   return ((intptr_t)om->next_om() & OM_LOCK_BIT) == OM_LOCK_BIT;
 163 }
 164 
 165 // Mark an ObjectMonitor* with OM_LOCK_BIT and return it.
 166 static ObjectMonitor* mark_om_ptr(ObjectMonitor* om) {
 167   return (ObjectMonitor*)((intptr_t)om | OM_LOCK_BIT);
 168 }
 169 
 170 // Return the unmarked next field in an ObjectMonitor. Note: the next
 171 // field may or may not have been marked with OM_LOCK_BIT originally.
 172 static ObjectMonitor* unmarked_next(ObjectMonitor* om) {
 173   return (ObjectMonitor*)((intptr_t)om->next_om() & ~OM_LOCK_BIT);
 174 }
 175 
 176 // Try to lock an ObjectMonitor. Returns true if locking was successful.
 177 // Otherwise returns false.
 178 static bool try_om_lock(ObjectMonitor* om) {
 179   // Get current next field without any OM_LOCK_BIT value.
 180   ObjectMonitor* next = unmarked_next(om);
 181   if (om->try_set_next_om(next, mark_om_ptr(next)) != next) {
 182     return false;  // Cannot lock the ObjectMonitor.
 183   }
 184   return true;
 185 }
 186 
 187 // Lock an ObjectMonitor.
 188 static void om_lock(ObjectMonitor* om) {
 189   while (true) {
 190     if (try_om_lock(om)) {
 191       return;
 192     }
 193   }
 194 }
 195 
 196 // Unlock an ObjectMonitor.
 197 static void om_unlock(ObjectMonitor* om) {
 198   ObjectMonitor* next = om->next_om();
 199   guarantee(((intptr_t)next & OM_LOCK_BIT) == OM_LOCK_BIT, "next=" INTPTR_FORMAT
 200             " must have OM_LOCK_BIT=%x set.", p2i(next), OM_LOCK_BIT);
 201 
 202   next = (ObjectMonitor*)((intptr_t)next & ~OM_LOCK_BIT);  // Clear OM_LOCK_BIT.
 203   om->set_next_om(next);
 204 }
 205 
 206 // Get the list head after locking it. Returns the list head or NULL
 207 // if the list is empty.
 208 static ObjectMonitor* get_list_head_locked(ObjectMonitor** list_p) {
 209   while (true) {
 210     ObjectMonitor* mid = Atomic::load(list_p);
 211     if (mid == NULL) {
 212       return NULL;  // The list is empty.
 213     }
 214     if (try_om_lock(mid)) {
 215       if (Atomic::load(list_p) != mid) {
 216         // The list head changed before we could lock it so we have to retry.
 217         om_unlock(mid);
 218         continue;
 219       }
 220       return mid;
 221     }
 222   }
 223 }
 224 
 225 #undef OM_LOCK_BIT
 226 
 227 
 228 // =====================> List Management functions
 229 
 230 // Prepend a list of ObjectMonitors to the specified *list_p. 'tail' is
 231 // the last ObjectMonitor in the list and there are 'count' on the list.
 232 // Also updates the specified *count_p.
 233 static void prepend_list_to_common(ObjectMonitor* list, ObjectMonitor* tail,
 234                                    int count, ObjectMonitor** list_p,
 235                                    int* count_p) {
 236   while (true) {
 237     ObjectMonitor* cur = Atomic::load(list_p);
 238     // Prepend list to *list_p.
 239     if (!try_om_lock(tail)) {
 240       // Failed to lock tail due to a list walker so try it all again.
 241       continue;
 242     }
 243     tail->set_next_om(cur);  // tail now points to cur (and unlocks tail)
 244     if (cur == NULL) {
 245       // No potential race with takers or other prependers since
 246       // *list_p is empty.
 247       if (Atomic::cmpxchg(list_p, cur, list) == cur) {
 248         // Successfully switched *list_p to the list value.
 249         Atomic::add(count_p, count);
 250         break;
 251       }
 252       // Implied else: try it all again
 253     } else {
 254       if (!try_om_lock(cur)) {
 255         continue;  // failed to lock cur so try it all again
 256       }
 257       // We locked cur so try to switch *list_p to the list value.
 258       if (Atomic::cmpxchg(list_p, cur, list) != cur) {
 259         // The list head has changed so unlock cur and try again:
 260         om_unlock(cur);
 261         continue;
 262       }
 263       Atomic::add(count_p, count);
 264       om_unlock(cur);
 265       break;
 266     }
 267   }
 268 }
 269 
 270 // Prepend a newly allocated block of ObjectMonitors to g_block_list and
 271 // om_list_globals._free_list. Also updates om_list_globals._population
 272 // and om_list_globals._free_count.
 273 void ObjectSynchronizer::prepend_block_to_lists(PaddedObjectMonitor* new_blk) {
 274   // First we handle g_block_list:
 275   while (true) {
 276     PaddedObjectMonitor* cur = Atomic::load(&g_block_list);
 277     // Prepend new_blk to g_block_list. The first ObjectMonitor in
 278     // a block is reserved for use as linkage to the next block.
 279     new_blk[0].set_next_om(cur);
 280     if (Atomic::cmpxchg(&g_block_list, cur, new_blk) == cur) {
 281       // Successfully switched g_block_list to the new_blk value.
 282       Atomic::add(&om_list_globals._population, _BLOCKSIZE - 1);
 283       break;
 284     }
 285     // Implied else: try it all again
 286   }
 287 
 288   // Second we handle om_list_globals._free_list:
 289   prepend_list_to_common(new_blk + 1, &new_blk[_BLOCKSIZE - 1], _BLOCKSIZE - 1,
 290                          &om_list_globals._free_list, &om_list_globals._free_count);
 291 }
 292 
 293 // Prepend a list of ObjectMonitors to om_list_globals._free_list.
 294 // 'tail' is the last ObjectMonitor in the list and there are 'count'
 295 // on the list. Also updates om_list_globals._free_count.
 296 static void prepend_list_to_global_free_list(ObjectMonitor* list,
 297                                              ObjectMonitor* tail, int count) {
 298   prepend_list_to_common(list, tail, count, &om_list_globals._free_list,
 299                          &om_list_globals._free_count);
 300 }
 301 
 302 // Prepend a list of ObjectMonitors to om_list_globals._in_use_list.
 303 // 'tail' is the last ObjectMonitor in the list and there are 'count'
 304 // on the list. Also updates om_list_globals._in_use_list.
 305 static void prepend_list_to_global_in_use_list(ObjectMonitor* list,
 306                                                ObjectMonitor* tail, int count) {
 307   prepend_list_to_common(list, tail, count, &om_list_globals._in_use_list,
 308                          &om_list_globals._in_use_count);
 309 }
 310 
 311 // Prepend an ObjectMonitor to the specified list. Also updates
 312 // the specified counter.
 313 static void prepend_to_common(ObjectMonitor* m, ObjectMonitor** list_p,
 314                               int* count_p) {
 315   while (true) {
 316     om_lock(m);  // Lock m so we can safely update its next field.
 317     ObjectMonitor* cur = NULL;
 318     // Lock the list head to guard against races with a list walker
 319     // thread:
 320     if ((cur = get_list_head_locked(list_p)) != NULL) {
 321       // List head is now locked so we can safely switch it.
 322       m->set_next_om(cur);  // m now points to cur (and unlocks m)
 323       Atomic::store(list_p, m);  // Switch list head to unlocked m.
 324       om_unlock(cur);
 325       break;
 326     }
 327     // The list is empty so try to set the list head.
 328     assert(cur == NULL, "cur must be NULL: cur=" INTPTR_FORMAT, p2i(cur));
 329     m->set_next_om(cur);  // m now points to NULL (and unlocks m)
 330     if (Atomic::cmpxchg(list_p, cur, m) == cur) {
 331       // List head is now unlocked m.
 332       break;
 333     }
 334     // Implied else: try it all again
 335   }
 336   Atomic::inc(count_p);
 337 }
 338 
 339 // Prepend an ObjectMonitor to a per-thread om_free_list.
 340 // Also updates the per-thread om_free_count.
 341 static void prepend_to_om_free_list(Thread* self, ObjectMonitor* m) {
 342   prepend_to_common(m, &self->om_free_list, &self->om_free_count);
 343 }
 344 
 345 // Prepend an ObjectMonitor to a per-thread om_in_use_list.
 346 // Also updates the per-thread om_in_use_count.
 347 static void prepend_to_om_in_use_list(Thread* self, ObjectMonitor* m) {
 348   prepend_to_common(m, &self->om_in_use_list, &self->om_in_use_count);
 349 }
 350 
 351 // Take an ObjectMonitor from the start of the specified list. Also
 352 // decrements the specified counter. Returns NULL if none are available.
 353 static ObjectMonitor* take_from_start_of_common(ObjectMonitor** list_p,
 354                                                 int* count_p) {
 355   ObjectMonitor* take = NULL;
 356   // Lock the list head to guard against races with a list walker
 357   // thread:
 358   if ((take = get_list_head_locked(list_p)) == NULL) {
 359     return NULL;  // None are available.
 360   }
 361   ObjectMonitor* next = unmarked_next(take);
 362   // Switch locked list head to next (which unlocks the list head, but
 363   // leaves take locked):
 364   Atomic::store(list_p, next);
 365   Atomic::dec(count_p);
 366   // Unlock take, but leave the next value for any lagging list
 367   // walkers. It will get cleaned up when take is prepended to
 368   // the in-use list:
 369   om_unlock(take);
 370   return take;
 371 }
 372 
 373 // Take an ObjectMonitor from the start of the om_list_globals._free_list.
 374 // Also updates om_list_globals._free_count. Returns NULL if none are
 375 // available.
 376 static ObjectMonitor* take_from_start_of_global_free_list() {
 377   return take_from_start_of_common(&om_list_globals._free_list,
 378                                    &om_list_globals._free_count);
 379 }
 380 
 381 // Take an ObjectMonitor from the start of a per-thread free-list.
 382 // Also updates om_free_count. Returns NULL if none are available.
 383 static ObjectMonitor* take_from_start_of_om_free_list(Thread* self) {
 384   return take_from_start_of_common(&self->om_free_list, &self->om_free_count);
 385 }
 386 
 387 
 388 // =====================> Quick functions
 389 
 390 // The quick_* forms are special fast-path variants used to improve
 391 // performance.  In the simplest case, a "quick_*" implementation could
 392 // simply return false, in which case the caller will perform the necessary
 393 // state transitions and call the slow-path form.
 394 // The fast-path is designed to handle frequently arising cases in an efficient
 395 // manner and is just a degenerate "optimistic" variant of the slow-path.
 396 // returns true  -- to indicate the call was satisfied.
 397 // returns false -- to indicate the call needs the services of the slow-path.
 398 // A no-loitering ordinance is in effect for code in the quick_* family
 399 // operators: safepoints or indefinite blocking (blocking that might span a
 400 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 401 // entry.
 402 //
 403 // Consider: An interesting optimization is to have the JIT recognize the
 404 // following common idiom:
 405 //   synchronized (someobj) { .... ; notify(); }
 406 // That is, we find a notify() or notifyAll() call that immediately precedes
 407 // the monitorexit operation.  In that case the JIT could fuse the operations
 408 // into a single notifyAndExit() runtime primitive.
 409 
 410 bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) {
 411   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 412   assert(self->is_Java_thread(), "invariant");
 413   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 414   NoSafepointVerifier nsv;
 415   if (obj == NULL) return false;  // slow-path for invalid obj
 416   const markWord mark = obj->mark();
 417 
 418   if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) {
 419     // Degenerate notify
 420     // stack-locked by caller so by definition the implied waitset is empty.
 421     return true;
 422   }
 423 
 424   if (mark.has_monitor()) {
 425     ObjectMonitor* const mon = mark.monitor();
 426     assert(mon->object() == obj, "invariant");
 427     if (mon->owner() != self) return false;  // slow-path for IMS exception
 428 
 429     if (mon->first_waiter() != NULL) {
 430       // We have one or more waiters. Since this is an inflated monitor
 431       // that we own, we can transfer one or more threads from the waitset
 432       // to the entrylist here and now, avoiding the slow-path.
 433       if (all) {
 434         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 435       } else {
 436         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 437       }
 438       int free_count = 0;
 439       do {
 440         mon->INotify(self);
 441         ++free_count;
 442       } while (mon->first_waiter() != NULL && all);
 443       OM_PERFDATA_OP(Notifications, inc(free_count));
 444     }
 445     return true;
 446   }
 447 
 448   // biased locking and any other IMS exception states take the slow-path
 449   return false;
 450 }
 451 
 452 
 453 // The LockNode emitted directly at the synchronization site would have
 454 // been too big if it were to have included support for the cases of inflated
 455 // recursive enter and exit, so they go here instead.
 456 // Note that we can't safely call AsyncPrintJavaStack() from within
 457 // quick_enter() as our thread state remains _in_Java.
 458 
 459 bool ObjectSynchronizer::quick_enter(oop obj, Thread* self,
 460                                      BasicLock * lock) {
 461   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 462   assert(self->is_Java_thread(), "invariant");
 463   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 464   NoSafepointVerifier nsv;
 465   if (obj == NULL) return false;       // Need to throw NPE
 466   const markWord mark = obj->mark();
 467 
 468   if (mark.has_monitor()) {
 469     ObjectMonitor* const m = mark.monitor();
 470     assert(m->object() == obj, "invariant");
 471     Thread* const owner = (Thread *) m->_owner;
 472 
 473     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 474     // and observability
 475     // Case: light contention possibly amenable to TLE
 476     // Case: TLE inimical operations such as nested/recursive synchronization
 477 
 478     if (owner == self) {
 479       m->_recursions++;
 480       return true;
 481     }
 482 
 483     // This Java Monitor is inflated so obj's header will never be
 484     // displaced to this thread's BasicLock. Make the displaced header
 485     // non-NULL so this BasicLock is not seen as recursive nor as
 486     // being locked. We do this unconditionally so that this thread's
 487     // BasicLock cannot be mis-interpreted by any stack walkers. For
 488     // performance reasons, stack walkers generally first check for
 489     // Biased Locking in the object's header, the second check is for
 490     // stack-locking in the object's header, the third check is for
 491     // recursive stack-locking in the displaced header in the BasicLock,
 492     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 493     lock->set_displaced_header(markWord::unused_mark());
 494 
 495     if (owner == NULL && m->try_set_owner_from(NULL, self) == NULL) {
 496       assert(m->_recursions == 0, "invariant");
 497       return true;
 498     }
 499   }
 500 
 501   // Note that we could inflate in quick_enter.
 502   // This is likely a useful optimization
 503   // Critically, in quick_enter() we must not:
 504   // -- perform bias revocation, or
 505   // -- block indefinitely, or
 506   // -- reach a safepoint
 507 
 508   return false;        // revert to slow-path
 509 }
 510 
 511 // -----------------------------------------------------------------------------
 512 // Monitor Enter/Exit
 513 // The interpreter and compiler assembly code tries to lock using the fast path
 514 // of this algorithm. Make sure to update that code if the following function is
 515 // changed. The implementation is extremely sensitive to race condition. Be careful.
 516 
 517 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, TRAPS) {
 518   if (UseBiasedLocking) {
 519     if (!SafepointSynchronize::is_at_safepoint()) {
 520       BiasedLocking::revoke(obj, THREAD);
 521     } else {
 522       BiasedLocking::revoke_at_safepoint(obj);
 523     }
 524   }
 525 
 526   markWord mark = obj->mark();
 527   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 528 
 529   if (mark.is_neutral()) {
 530     // Anticipate successful CAS -- the ST of the displaced mark must
 531     // be visible <= the ST performed by the CAS.
 532     lock->set_displaced_header(mark);
 533     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 534       return;
 535     }
 536     // Fall through to inflate() ...
 537   } else if (mark.has_locker() &&
 538              THREAD->is_lock_owned((address)mark.locker())) {
 539     assert(lock != mark.locker(), "must not re-lock the same lock");
 540     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 541     lock->set_displaced_header(markWord::from_pointer(NULL));
 542     return;
 543   }
 544 
 545   // The object header will never be displaced to this lock,
 546   // so it does not matter what the value is, except that it
 547   // must be non-zero to avoid looking like a re-entrant lock,
 548   // and must not look locked either.
 549   lock->set_displaced_header(markWord::unused_mark());
 550   inflate(THREAD, obj(), inflate_cause_monitor_enter)->enter(THREAD);
 551 }
 552 
 553 void ObjectSynchronizer::exit(oop object, BasicLock* lock, TRAPS) {
 554   markWord mark = object->mark();
 555   // We cannot check for Biased Locking if we are racing an inflation.
 556   assert(mark == markWord::INFLATING() ||
 557          !mark.has_bias_pattern(), "should not see bias pattern here");
 558 
 559   markWord dhw = lock->displaced_header();
 560   if (dhw.value() == 0) {
 561     // If the displaced header is NULL, then this exit matches up with
 562     // a recursive enter. No real work to do here except for diagnostics.
 563 #ifndef PRODUCT
 564     if (mark != markWord::INFLATING()) {
 565       // Only do diagnostics if we are not racing an inflation. Simply
 566       // exiting a recursive enter of a Java Monitor that is being
 567       // inflated is safe; see the has_monitor() comment below.
 568       assert(!mark.is_neutral(), "invariant");
 569       assert(!mark.has_locker() ||
 570              THREAD->is_lock_owned((address)mark.locker()), "invariant");
 571       if (mark.has_monitor()) {
 572         // The BasicLock's displaced_header is marked as a recursive
 573         // enter and we have an inflated Java Monitor (ObjectMonitor).
 574         // This is a special case where the Java Monitor was inflated
 575         // after this thread entered the stack-lock recursively. When a
 576         // Java Monitor is inflated, we cannot safely walk the Java
 577         // Monitor owner's stack and update the BasicLocks because a
 578         // Java Monitor can be asynchronously inflated by a thread that
 579         // does not own the Java Monitor.
 580         ObjectMonitor* m = mark.monitor();
 581         assert(((oop)(m->object()))->mark() == mark, "invariant");
 582         assert(m->is_entered(THREAD), "invariant");
 583       }
 584     }
 585 #endif
 586     return;
 587   }
 588 
 589   if (mark == markWord::from_pointer(lock)) {
 590     // If the object is stack-locked by the current thread, try to
 591     // swing the displaced header from the BasicLock back to the mark.
 592     assert(dhw.is_neutral(), "invariant");
 593     if (object->cas_set_mark(dhw, mark) == mark) {
 594       return;
 595     }
 596   }
 597 
 598   // We have to take the slow-path of possible inflation and then exit.
 599   inflate(THREAD, object, inflate_cause_vm_internal)->exit(true, THREAD);
 600 }
 601 
 602 // -----------------------------------------------------------------------------
 603 // Class Loader  support to workaround deadlocks on the class loader lock objects
 604 // Also used by GC
 605 // complete_exit()/reenter() are used to wait on a nested lock
 606 // i.e. to give up an outer lock completely and then re-enter
 607 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 608 //  1) complete_exit lock1 - saving recursion count
 609 //  2) wait on lock2
 610 //  3) when notified on lock2, unlock lock2
 611 //  4) reenter lock1 with original recursion count
 612 //  5) lock lock2
 613 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 614 // NOTE(TSAN): We cannot instrument complete_exit/reenter in ObjectSynchronizer
 615 //             in a manner similar to wait and waitUninterruptibly, because
 616 //             (1) recursion count stored by inflated monitor is different from
 617 //             the absolute recursion count tracked by Tsan, and (2) in the
 618 //             general case, we cannot merely store Tsan's recursion count
 619 //             once: we must track it for *each invocation* of complete_exit.
 620 //             Hence, the best place to instrument for Tsan is at the call site
 621 //             for complete_exit/reenter. Luckily, there is only one call site.
 622 intx ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 623   if (UseBiasedLocking) {
 624     BiasedLocking::revoke(obj, THREAD);
 625     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 626   }
 627 
 628   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 629 
 630   return monitor->complete_exit(THREAD);
 631 }
 632 
 633 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 634 void ObjectSynchronizer::reenter(Handle obj, intx recursions, TRAPS) {
 635   if (UseBiasedLocking) {
 636     BiasedLocking::revoke(obj, THREAD);
 637     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 638   }
 639 
 640   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 641 
 642   monitor->reenter(recursions, THREAD);
 643 }
 644 // -----------------------------------------------------------------------------
 645 // JNI locks on java objects
 646 // NOTE: must use heavy weight monitor to handle jni monitor enter
 647 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 648   // the current locking is from JNI instead of Java code
 649   if (UseBiasedLocking) {
 650     BiasedLocking::revoke(obj, THREAD);
 651     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 652   }
 653   THREAD->set_current_pending_monitor_is_from_java(false);
 654   inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);
 655   THREAD->set_current_pending_monitor_is_from_java(true);
 656   TSAN_RUNTIME_ONLY(SharedRuntime::tsan_oop_lock(THREAD, obj()));
 657 }
 658 
 659 // NOTE: must use heavy weight monitor to handle jni monitor exit
 660 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 661   if (UseBiasedLocking) {
 662     Handle h_obj(THREAD, obj);
 663     BiasedLocking::revoke(h_obj, THREAD);
 664     obj = h_obj();
 665   }
 666   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 667 
 668   ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit);
 669   // If this thread has locked the object, exit the monitor. We
 670   // intentionally do not use CHECK here because we must exit the
 671   // monitor even if an exception is pending.
 672   if (monitor->check_owner(THREAD)) {
 673     TSAN_RUNTIME_ONLY(SharedRuntime::tsan_oop_unlock(THREAD, obj));
 674     monitor->exit(true, THREAD);
 675   }
 676 }
 677 
 678 // -----------------------------------------------------------------------------
 679 // Internal VM locks on java objects
 680 // standard constructor, allows locking failures
 681 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool do_lock) {
 682   _dolock = do_lock;
 683   _thread = thread;
 684   _thread->check_for_valid_safepoint_state();
 685   _obj = obj;
 686 
 687   if (_dolock) {
 688     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 689     TSAN_RUNTIME_ONLY(SharedRuntime::tsan_oop_lock(_thread, _obj()));
 690   }
 691 }
 692 
 693 ObjectLocker::~ObjectLocker() {
 694   if (_dolock) {
 695     TSAN_RUNTIME_ONLY(SharedRuntime::tsan_oop_unlock(_thread, _obj()));
 696     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 697   }
 698 }
 699 
 700 
 701 // -----------------------------------------------------------------------------
 702 //  Wait/Notify/NotifyAll
 703 // NOTE: must use heavy weight monitor to handle wait()
 704 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 705   if (UseBiasedLocking) {
 706     BiasedLocking::revoke(obj, THREAD);
 707     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 708   }
 709   if (millis < 0) {
 710     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 711   }
 712   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 713 
 714   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 715 
 716   TSAN_ONLY(int tsan_rec = 0;)
 717   TSAN_RUNTIME_ONLY(
 718     tsan_rec = SharedRuntime::tsan_oop_rec_unlock(THREAD, obj());
 719     assert(tsan_rec > 0, "tsan: unlocking unlocked mutex");
 720   );
 721 
 722   monitor->wait(millis, true, THREAD);
 723 
 724   TSAN_RUNTIME_ONLY(SharedRuntime::tsan_oop_rec_lock(THREAD, obj(), tsan_rec));
 725 
 726   // This dummy call is in place to get around dtrace bug 6254741.  Once
 727   // that's fixed we can uncomment the following line, remove the call
 728   // and change this function back into a "void" func.
 729   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 730   return dtrace_waited_probe(monitor, obj, THREAD);
 731 }
 732 
 733 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) {
 734   if (UseBiasedLocking) {
 735     BiasedLocking::revoke(obj, THREAD);
 736     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 737   }
 738   if (millis < 0) {
 739     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 740   }
 741   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 742   TSAN_ONLY(int tsan_rec;)
 743   TSAN_RUNTIME_ONLY(
 744     tsan_rec = SharedRuntime::tsan_oop_rec_unlock(THREAD, obj());
 745     assert(tsan_rec > 0, "tsan: unlocking unlocked mutex");
 746   );
 747   monitor->wait(millis, false, THREAD);
 748   TSAN_RUNTIME_ONLY(SharedRuntime::tsan_oop_rec_lock(THREAD, obj(), tsan_rec));
 749 }
 750 
 751 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 752   if (UseBiasedLocking) {
 753     BiasedLocking::revoke(obj, THREAD);
 754     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 755   }
 756 
 757   markWord mark = obj->mark();
 758   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 759     return;
 760   }
 761   inflate(THREAD, obj(), inflate_cause_notify)->notify(THREAD);
 762 }
 763 
 764 // NOTE: see comment of notify()
 765 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 766   if (UseBiasedLocking) {
 767     BiasedLocking::revoke(obj, THREAD);
 768     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 769   }
 770 
 771   markWord mark = obj->mark();
 772   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 773     return;
 774   }
 775   inflate(THREAD, obj(), inflate_cause_notify)->notifyAll(THREAD);
 776 }
 777 
 778 // -----------------------------------------------------------------------------
 779 // Hash Code handling
 780 //
 781 // Performance concern:
 782 // OrderAccess::storestore() calls release() which at one time stored 0
 783 // into the global volatile OrderAccess::dummy variable. This store was
 784 // unnecessary for correctness. Many threads storing into a common location
 785 // causes considerable cache migration or "sloshing" on large SMP systems.
 786 // As such, I avoided using OrderAccess::storestore(). In some cases
 787 // OrderAccess::fence() -- which incurs local latency on the executing
 788 // processor -- is a better choice as it scales on SMP systems.
 789 //
 790 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 791 // a discussion of coherency costs. Note that all our current reference
 792 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 793 // x64, and SPARC.
 794 //
 795 // As a general policy we use "volatile" to control compiler-based reordering
 796 // and explicit fences (barriers) to control for architectural reordering
 797 // performed by the CPU(s) or platform.
 798 
 799 struct SharedGlobals {
 800   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 801   // These are highly shared mostly-read variables.
 802   // To avoid false-sharing they need to be the sole occupants of a cache line.
 803   volatile int stw_random;
 804   volatile int stw_cycle;
 805   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 806   // Hot RW variable -- Sequester to avoid false-sharing
 807   volatile int hc_sequence;
 808   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 809 };
 810 
 811 static SharedGlobals GVars;
 812 static int _forceMonitorScavenge = 0; // Scavenge required and pending
 813 
 814 static markWord read_stable_mark(oop obj) {
 815   markWord mark = obj->mark();
 816   if (!mark.is_being_inflated()) {
 817     return mark;       // normal fast-path return
 818   }
 819 
 820   int its = 0;
 821   for (;;) {
 822     markWord mark = obj->mark();
 823     if (!mark.is_being_inflated()) {
 824       return mark;    // normal fast-path return
 825     }
 826 
 827     // The object is being inflated by some other thread.
 828     // The caller of read_stable_mark() must wait for inflation to complete.
 829     // Avoid live-lock
 830     // TODO: consider calling SafepointSynchronize::do_call_back() while
 831     // spinning to see if there's a safepoint pending.  If so, immediately
 832     // yielding or blocking would be appropriate.  Avoid spinning while
 833     // there is a safepoint pending.
 834     // TODO: add inflation contention performance counters.
 835     // TODO: restrict the aggregate number of spinners.
 836 
 837     ++its;
 838     if (its > 10000 || !os::is_MP()) {
 839       if (its & 1) {
 840         os::naked_yield();
 841       } else {
 842         // Note that the following code attenuates the livelock problem but is not
 843         // a complete remedy.  A more complete solution would require that the inflating
 844         // thread hold the associated inflation lock.  The following code simply restricts
 845         // the number of spinners to at most one.  We'll have N-2 threads blocked
 846         // on the inflationlock, 1 thread holding the inflation lock and using
 847         // a yield/park strategy, and 1 thread in the midst of inflation.
 848         // A more refined approach would be to change the encoding of INFLATING
 849         // to allow encapsulation of a native thread pointer.  Threads waiting for
 850         // inflation to complete would use CAS to push themselves onto a singly linked
 851         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 852         // and calling park().  When inflation was complete the thread that accomplished inflation
 853         // would detach the list and set the markword to inflated with a single CAS and
 854         // then for each thread on the list, set the flag and unpark() the thread.
 855         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 856         // wakes at most one thread whereas we need to wake the entire list.
 857         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 858         int YieldThenBlock = 0;
 859         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 860         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 861         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 862         while (obj->mark() == markWord::INFLATING()) {
 863           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 864           // so we periodically call self->_ParkEvent->park(1).
 865           // We use a mixed spin/yield/block mechanism.
 866           if ((YieldThenBlock++) >= 16) {
 867             Thread::current()->_ParkEvent->park(1);
 868           } else {
 869             os::naked_yield();
 870           }
 871         }
 872         Thread::muxRelease(gInflationLocks + ix);
 873       }
 874     } else {
 875       SpinPause();       // SMP-polite spinning
 876     }
 877   }
 878 }
 879 
 880 // hashCode() generation :
 881 //
 882 // Possibilities:
 883 // * MD5Digest of {obj,stw_random}
 884 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 885 // * A DES- or AES-style SBox[] mechanism
 886 // * One of the Phi-based schemes, such as:
 887 //   2654435761 = 2^32 * Phi (golden ratio)
 888 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 889 // * A variation of Marsaglia's shift-xor RNG scheme.
 890 // * (obj ^ stw_random) is appealing, but can result
 891 //   in undesirable regularity in the hashCode values of adjacent objects
 892 //   (objects allocated back-to-back, in particular).  This could potentially
 893 //   result in hashtable collisions and reduced hashtable efficiency.
 894 //   There are simple ways to "diffuse" the middle address bits over the
 895 //   generated hashCode values:
 896 
 897 static inline intptr_t get_next_hash(Thread* self, oop obj) {
 898   intptr_t value = 0;
 899   if (hashCode == 0) {
 900     // This form uses global Park-Miller RNG.
 901     // On MP system we'll have lots of RW access to a global, so the
 902     // mechanism induces lots of coherency traffic.
 903     value = os::random();
 904   } else if (hashCode == 1) {
 905     // This variation has the property of being stable (idempotent)
 906     // between STW operations.  This can be useful in some of the 1-0
 907     // synchronization schemes.
 908     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 909     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 910   } else if (hashCode == 2) {
 911     value = 1;            // for sensitivity testing
 912   } else if (hashCode == 3) {
 913     value = ++GVars.hc_sequence;
 914   } else if (hashCode == 4) {
 915     value = cast_from_oop<intptr_t>(obj);
 916   } else {
 917     // Marsaglia's xor-shift scheme with thread-specific state
 918     // This is probably the best overall implementation -- we'll
 919     // likely make this the default in future releases.
 920     unsigned t = self->_hashStateX;
 921     t ^= (t << 11);
 922     self->_hashStateX = self->_hashStateY;
 923     self->_hashStateY = self->_hashStateZ;
 924     self->_hashStateZ = self->_hashStateW;
 925     unsigned v = self->_hashStateW;
 926     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 927     self->_hashStateW = v;
 928     value = v;
 929   }
 930 
 931   value &= markWord::hash_mask;
 932   if (value == 0) value = 0xBAD;
 933   assert(value != markWord::no_hash, "invariant");
 934   return value;
 935 }
 936 
 937 intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) {
 938   if (UseBiasedLocking) {
 939     // NOTE: many places throughout the JVM do not expect a safepoint
 940     // to be taken here, in particular most operations on perm gen
 941     // objects. However, we only ever bias Java instances and all of
 942     // the call sites of identity_hash that might revoke biases have
 943     // been checked to make sure they can handle a safepoint. The
 944     // added check of the bias pattern is to avoid useless calls to
 945     // thread-local storage.
 946     if (obj->mark().has_bias_pattern()) {
 947       // Handle for oop obj in case of STW safepoint
 948       Handle hobj(self, obj);
 949       // Relaxing assertion for bug 6320749.
 950       assert(Universe::verify_in_progress() ||
 951              !SafepointSynchronize::is_at_safepoint(),
 952              "biases should not be seen by VM thread here");
 953       BiasedLocking::revoke(hobj, JavaThread::current());
 954       obj = hobj();
 955       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 956     }
 957   }
 958 
 959   // hashCode() is a heap mutator ...
 960   // Relaxing assertion for bug 6320749.
 961   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 962          !SafepointSynchronize::is_at_safepoint(), "invariant");
 963   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 964          self->is_Java_thread() , "invariant");
 965   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 966          ((JavaThread *)self)->thread_state() != _thread_blocked, "invariant");
 967 
 968   ObjectMonitor* monitor = NULL;
 969   markWord temp, test;
 970   intptr_t hash;
 971   markWord mark = read_stable_mark(obj);
 972 
 973   // object should remain ineligible for biased locking
 974   assert(!mark.has_bias_pattern(), "invariant");
 975 
 976   if (mark.is_neutral()) {            // if this is a normal header
 977     hash = mark.hash();
 978     if (hash != 0) {                  // if it has a hash, just return it
 979       return hash;
 980     }
 981     hash = get_next_hash(self, obj);  // get a new hash
 982     temp = mark.copy_set_hash(hash);  // merge the hash into header
 983                                       // try to install the hash
 984     test = obj->cas_set_mark(temp, mark);
 985     if (test == mark) {               // if the hash was installed, return it
 986       return hash;
 987     }
 988     // Failed to install the hash. It could be that another thread
 989     // installed the hash just before our attempt or inflation has
 990     // occurred or... so we fall thru to inflate the monitor for
 991     // stability and then install the hash.
 992   } else if (mark.has_monitor()) {
 993     monitor = mark.monitor();
 994     temp = monitor->header();
 995     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 996     hash = temp.hash();
 997     if (hash != 0) {                  // if it has a hash, just return it
 998       return hash;
 999     }
1000     // Fall thru so we only have one place that installs the hash in
1001     // the ObjectMonitor.
1002   } else if (self->is_lock_owned((address)mark.locker())) {
1003     // This is a stack lock owned by the calling thread so fetch the
1004     // displaced markWord from the BasicLock on the stack.
1005     temp = mark.displaced_mark_helper();
1006     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1007     hash = temp.hash();
1008     if (hash != 0) {                  // if it has a hash, just return it
1009       return hash;
1010     }
1011     // WARNING:
1012     // The displaced header in the BasicLock on a thread's stack
1013     // is strictly immutable. It CANNOT be changed in ANY cases.
1014     // So we have to inflate the stack lock into an ObjectMonitor
1015     // even if the current thread owns the lock. The BasicLock on
1016     // a thread's stack can be asynchronously read by other threads
1017     // during an inflate() call so any change to that stack memory
1018     // may not propagate to other threads correctly.
1019   }
1020 
1021   // Inflate the monitor to set the hash.
1022   monitor = inflate(self, obj, inflate_cause_hash_code);
1023   // Load ObjectMonitor's header/dmw field and see if it has a hash.
1024   mark = monitor->header();
1025   assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1026   hash = mark.hash();
1027   if (hash == 0) {                    // if it does not have a hash
1028     hash = get_next_hash(self, obj);  // get a new hash
1029     temp = mark.copy_set_hash(hash);  // merge the hash into header
1030     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1031     uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
1032     test = markWord(v);
1033     if (test != mark) {
1034       // The attempt to update the ObjectMonitor's header/dmw field
1035       // did not work. This can happen if another thread managed to
1036       // merge in the hash just before our cmpxchg().
1037       // If we add any new usages of the header/dmw field, this code
1038       // will need to be updated.
1039       hash = test.hash();
1040       assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1041       assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1042     }
1043   }
1044   // We finally get the hash.
1045   return hash;
1046 }
1047 
1048 // Deprecated -- use FastHashCode() instead.
1049 
1050 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
1051   return FastHashCode(Thread::current(), obj());
1052 }
1053 
1054 
1055 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
1056                                                    Handle h_obj) {
1057   if (UseBiasedLocking) {
1058     BiasedLocking::revoke(h_obj, thread);
1059     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1060   }
1061 
1062   assert(thread == JavaThread::current(), "Can only be called on current thread");
1063   oop obj = h_obj();
1064 
1065   markWord mark = read_stable_mark(obj);
1066 
1067   // Uncontended case, header points to stack
1068   if (mark.has_locker()) {
1069     return thread->is_lock_owned((address)mark.locker());
1070   }
1071   // Contended case, header points to ObjectMonitor (tagged pointer)
1072   if (mark.has_monitor()) {
1073     ObjectMonitor* monitor = mark.monitor();
1074     return monitor->is_entered(thread) != 0;
1075   }
1076   // Unlocked case, header in place
1077   assert(mark.is_neutral(), "sanity check");
1078   return false;
1079 }
1080 
1081 // Be aware of this method could revoke bias of the lock object.
1082 // This method queries the ownership of the lock handle specified by 'h_obj'.
1083 // If the current thread owns the lock, it returns owner_self. If no
1084 // thread owns the lock, it returns owner_none. Otherwise, it will return
1085 // owner_other.
1086 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
1087 (JavaThread *self, Handle h_obj) {
1088   // The caller must beware this method can revoke bias, and
1089   // revocation can result in a safepoint.
1090   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
1091   assert(self->thread_state() != _thread_blocked, "invariant");
1092 
1093   // Possible mark states: neutral, biased, stack-locked, inflated
1094 
1095   if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) {
1096     // CASE: biased
1097     BiasedLocking::revoke(h_obj, self);
1098     assert(!h_obj->mark().has_bias_pattern(),
1099            "biases should be revoked by now");
1100   }
1101 
1102   assert(self == JavaThread::current(), "Can only be called on current thread");
1103   oop obj = h_obj();
1104   markWord mark = read_stable_mark(obj);
1105 
1106   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
1107   if (mark.has_locker()) {
1108     return self->is_lock_owned((address)mark.locker()) ?
1109       owner_self : owner_other;
1110   }
1111 
1112   // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
1113   // The Object:ObjectMonitor relationship is stable as long as we're
1114   // not at a safepoint.
1115   if (mark.has_monitor()) {
1116     void* owner = mark.monitor()->_owner;
1117     if (owner == NULL) return owner_none;
1118     return (owner == self ||
1119             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
1120   }
1121 
1122   // CASE: neutral
1123   assert(mark.is_neutral(), "sanity check");
1124   return owner_none;           // it's unlocked
1125 }
1126 
1127 // FIXME: jvmti should call this
1128 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1129   if (UseBiasedLocking) {
1130     if (SafepointSynchronize::is_at_safepoint()) {
1131       BiasedLocking::revoke_at_safepoint(h_obj);
1132     } else {
1133       BiasedLocking::revoke(h_obj, JavaThread::current());
1134     }
1135     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1136   }
1137 
1138   oop obj = h_obj();
1139   address owner = NULL;
1140 
1141   markWord mark = read_stable_mark(obj);
1142 
1143   // Uncontended case, header points to stack
1144   if (mark.has_locker()) {
1145     owner = (address) mark.locker();
1146   }
1147 
1148   // Contended case, header points to ObjectMonitor (tagged pointer)
1149   else if (mark.has_monitor()) {
1150     ObjectMonitor* monitor = mark.monitor();
1151     assert(monitor != NULL, "monitor should be non-null");
1152     owner = (address) monitor->owner();
1153   }
1154 
1155   if (owner != NULL) {
1156     // owning_thread_from_monitor_owner() may also return NULL here
1157     return Threads::owning_thread_from_monitor_owner(t_list, owner);
1158   }
1159 
1160   // Unlocked case, header in place
1161   // Cannot have assertion since this object may have been
1162   // locked by another thread when reaching here.
1163   // assert(mark.is_neutral(), "sanity check");
1164 
1165   return NULL;
1166 }
1167 
1168 // Visitors ...
1169 
1170 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
1171   PaddedObjectMonitor* block = Atomic::load(&g_block_list);
1172   while (block != NULL) {
1173     assert(block->object() == CHAINMARKER, "must be a block header");
1174     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
1175       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
1176       oop object = (oop)mid->object();
1177       if (object != NULL) {
1178         // Only process with closure if the object is set.
1179         closure->do_monitor(mid);
1180       }
1181     }
1182     // unmarked_next() is not needed with g_block_list (no locking
1183     // used with block linkage _next_om fields).
1184     block = (PaddedObjectMonitor*)block->next_om();
1185   }
1186 }
1187 
1188 static bool monitors_used_above_threshold() {
1189   int population = Atomic::load(&om_list_globals._population);
1190   if (population == 0) {
1191     return false;
1192   }
1193   if (MonitorUsedDeflationThreshold > 0) {
1194     int monitors_used = population - Atomic::load(&om_list_globals._free_count);
1195     int monitor_usage = (monitors_used * 100LL) / population;
1196     return monitor_usage > MonitorUsedDeflationThreshold;
1197   }
1198   return false;
1199 }
1200 
1201 // Returns true if MonitorBound is set (> 0) and if the specified
1202 // cnt is > MonitorBound. Otherwise returns false.
1203 static bool is_MonitorBound_exceeded(const int cnt) {
1204   const int mx = MonitorBound;
1205   return mx > 0 && cnt > mx;
1206 }
1207 
1208 bool ObjectSynchronizer::is_cleanup_needed() {
1209   if (monitors_used_above_threshold()) {
1210     // Too many monitors in use.
1211     return true;
1212   }
1213   return needs_monitor_scavenge();
1214 }
1215 
1216 bool ObjectSynchronizer::needs_monitor_scavenge() {
1217   if (Atomic::load(&_forceMonitorScavenge) == 1) {
1218     log_info(monitorinflation)("Monitor scavenge needed, triggering safepoint cleanup.");
1219     return true;
1220   }
1221   return false;
1222 }
1223 
1224 void ObjectSynchronizer::oops_do(OopClosure* f) {
1225   // We only scan the global used list here (for moribund threads), and
1226   // the thread-local monitors in Thread::oops_do().
1227   global_used_oops_do(f);
1228 }
1229 
1230 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1231   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1232   list_oops_do(Atomic::load(&om_list_globals._in_use_list), f);
1233 }
1234 
1235 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1236   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1237   list_oops_do(thread->om_in_use_list, f);
1238 }
1239 
1240 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1241   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1242   // The oops_do() phase does not overlap with monitor deflation
1243   // so no need to lock ObjectMonitors for the list traversal.
1244   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
1245     if (mid->object() != NULL) {
1246       f->do_oop((oop*)mid->object_addr());
1247     }
1248   }
1249 }
1250 
1251 
1252 // -----------------------------------------------------------------------------
1253 // ObjectMonitor Lifecycle
1254 // -----------------------
1255 // Inflation unlinks monitors from om_list_globals._free_list or a per-thread
1256 // free list and associates them with objects. Deflation -- which occurs at
1257 // STW-time -- disassociates idle monitors from objects.
1258 // Such scavenged monitors are returned to the om_list_globals._free_list.
1259 //
1260 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1261 //
1262 // Lifecycle:
1263 // --   unassigned and on the om_list_globals._free_list
1264 // --   unassigned and on a per-thread free list
1265 // --   assigned to an object.  The object is inflated and the mark refers
1266 //      to the ObjectMonitor.
1267 
1268 
1269 // Constraining monitor pool growth via MonitorBound ...
1270 //
1271 // If MonitorBound is not set (<= 0), MonitorBound checks are disabled.
1272 //
1273 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1274 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1275 // an inordinate number of monitors in circulation.
1276 // To avoid that scenario we can artificially induce a STW safepoint
1277 // if the pool appears to be growing past some reasonable bound.
1278 // Generally we favor time in space-time tradeoffs, but as there's no
1279 // natural back-pressure on the # of extant monitors we need to impose some
1280 // type of limit.  Beware that if MonitorBound is set to too low a value
1281 // we could just loop. In addition, if MonitorBound is set to a low value
1282 // we'll incur more safepoints, which are harmful to performance.
1283 // See also: GuaranteedSafepointInterval
1284 //
1285 // If MonitorBound is set, the boundry applies to
1286 //     (om_list_globals._population - om_list_globals._free_count)
1287 // i.e., if there are not enough ObjectMonitors on the global free list,
1288 // then a safepoint deflation is induced. Picking a good MonitorBound value
1289 // is non-trivial.
1290 
1291 static void InduceScavenge(Thread* self, const char * Whence) {
1292   // Induce STW safepoint to trim monitors
1293   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1294   // More precisely, trigger a cleanup safepoint as the number
1295   // of active monitors passes the specified threshold.
1296   // TODO: assert thread state is reasonable
1297 
1298   if (Atomic::xchg(&_forceMonitorScavenge, 1) == 0) {
1299     VMThread::check_for_forced_cleanup();
1300   }
1301 }
1302 
1303 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self) {
1304   // A large MAXPRIVATE value reduces both list lock contention
1305   // and list coherency traffic, but also tends to increase the
1306   // number of ObjectMonitors in circulation as well as the STW
1307   // scavenge costs.  As usual, we lean toward time in space-time
1308   // tradeoffs.
1309   const int MAXPRIVATE = 1024;
1310   NoSafepointVerifier nsv;
1311 
1312   stringStream ss;
1313   for (;;) {
1314     ObjectMonitor* m;
1315 
1316     // 1: try to allocate from the thread's local om_free_list.
1317     // Threads will attempt to allocate first from their local list, then
1318     // from the global list, and only after those attempts fail will the
1319     // thread attempt to instantiate new monitors. Thread-local free lists
1320     // improve allocation latency, as well as reducing coherency traffic
1321     // on the shared global list.
1322     m = take_from_start_of_om_free_list(self);
1323     if (m != NULL) {
1324       guarantee(m->object() == NULL, "invariant");
1325       prepend_to_om_in_use_list(self, m);
1326       return m;
1327     }
1328 
1329     // 2: try to allocate from the global om_list_globals._free_list
1330     // If we're using thread-local free lists then try
1331     // to reprovision the caller's free list.
1332     if (Atomic::load(&om_list_globals._free_list) != NULL) {
1333       // Reprovision the thread's om_free_list.
1334       // Use bulk transfers to reduce the allocation rate and heat
1335       // on various locks.
1336       for (int i = self->om_free_provision; --i >= 0;) {
1337         ObjectMonitor* take = take_from_start_of_global_free_list();
1338         if (take == NULL) {
1339           break;  // No more are available.
1340         }
1341         guarantee(take->object() == NULL, "invariant");
1342         take->Recycle();
1343         om_release(self, take, false);
1344       }
1345       self->om_free_provision += 1 + (self->om_free_provision / 2);
1346       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1347 
1348       if (is_MonitorBound_exceeded(Atomic::load(&om_list_globals._population) -
1349                                    Atomic::load(&om_list_globals._free_count))) {
1350         // Not enough ObjectMonitors on the global free list.
1351         // We can't safely induce a STW safepoint from om_alloc() as our thread
1352         // state may not be appropriate for such activities and callers may hold
1353         // naked oops, so instead we defer the action.
1354         InduceScavenge(self, "om_alloc");
1355       }
1356       continue;
1357     }
1358 
1359     // 3: allocate a block of new ObjectMonitors
1360     // Both the local and global free lists are empty -- resort to malloc().
1361     // In the current implementation ObjectMonitors are TSM - immortal.
1362     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1363     // each ObjectMonitor to start at the beginning of a cache line,
1364     // so we use align_up().
1365     // A better solution would be to use C++ placement-new.
1366     // BEWARE: As it stands currently, we don't run the ctors!
1367     assert(_BLOCKSIZE > 1, "invariant");
1368     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1369     PaddedObjectMonitor* temp;
1370     size_t aligned_size = neededsize + (OM_CACHE_LINE_SIZE - 1);
1371     void* real_malloc_addr = NEW_C_HEAP_ARRAY(char, aligned_size, mtInternal);
1372     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, OM_CACHE_LINE_SIZE);
1373     (void)memset((void *) temp, 0, neededsize);
1374 
1375     // Format the block.
1376     // initialize the linked list, each monitor points to its next
1377     // forming the single linked free list, the very first monitor
1378     // will points to next block, which forms the block list.
1379     // The trick of using the 1st element in the block as g_block_list
1380     // linkage should be reconsidered.  A better implementation would
1381     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1382 
1383     for (int i = 1; i < _BLOCKSIZE; i++) {
1384       temp[i].set_next_om((ObjectMonitor*)&temp[i + 1]);
1385     }
1386 
1387     // terminate the last monitor as the end of list
1388     temp[_BLOCKSIZE - 1].set_next_om((ObjectMonitor*)NULL);
1389 
1390     // Element [0] is reserved for global list linkage
1391     temp[0].set_object(CHAINMARKER);
1392 
1393     // Consider carving out this thread's current request from the
1394     // block in hand.  This avoids some lock traffic and redundant
1395     // list activity.
1396 
1397     prepend_block_to_lists(temp);
1398   }
1399 }
1400 
1401 // Place "m" on the caller's private per-thread om_free_list.
1402 // In practice there's no need to clamp or limit the number of
1403 // monitors on a thread's om_free_list as the only non-allocation time
1404 // we'll call om_release() is to return a monitor to the free list after
1405 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1406 // accumulate on a thread's free list.
1407 //
1408 // Key constraint: all ObjectMonitors on a thread's free list and the global
1409 // free list must have their object field set to null. This prevents the
1410 // scavenger -- deflate_monitor_list() -- from reclaiming them while we
1411 // are trying to release them.
1412 
1413 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1414                                     bool from_per_thread_alloc) {
1415   guarantee(m->header().value() == 0, "invariant");
1416   guarantee(m->object() == NULL, "invariant");
1417   NoSafepointVerifier nsv;
1418 
1419   stringStream ss;
1420   guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: "
1421             "%s, recursions=" INTX_FORMAT, m->is_busy_to_string(&ss),
1422             m->_recursions);
1423   // _next_om is used for both per-thread in-use and free lists so
1424   // we have to remove 'm' from the in-use list first (as needed).
1425   if (from_per_thread_alloc) {
1426     // Need to remove 'm' from om_in_use_list.
1427     ObjectMonitor* mid = NULL;
1428     ObjectMonitor* next = NULL;
1429 
1430     // This list walk can only race with another list walker since
1431     // deflation can only happen at a safepoint so we don't have to
1432     // worry about an ObjectMonitor being removed from this list
1433     // while we are walking it.
1434 
1435     // Lock the list head to avoid racing with another list walker.
1436     if ((mid = get_list_head_locked(&self->om_in_use_list)) == NULL) {
1437       fatal("thread=" INTPTR_FORMAT " in-use list must not be empty.", p2i(self));
1438     }
1439     next = unmarked_next(mid);
1440     if (m == mid) {
1441       // First special case:
1442       // 'm' matches mid, is the list head and is locked. Switch the list
1443       // head to next which unlocks the list head, but leaves the extracted
1444       // mid locked:
1445       Atomic::store(&self->om_in_use_list, next);
1446     } else if (m == next) {
1447       // Second special case:
1448       // 'm' matches next after the list head and we already have the list
1449       // head locked so set mid to what we are extracting:
1450       mid = next;
1451       // Lock mid to prevent races with a list walker:
1452       om_lock(mid);
1453       // Update next to what follows mid (if anything):
1454       next = unmarked_next(mid);
1455       // Switch next after the list head to new next which unlocks the
1456       // list head, but leaves the extracted mid locked:
1457       self->om_in_use_list->set_next_om(next);
1458     } else {
1459       // We have to search the list to find 'm'.
1460       om_unlock(mid);  // unlock the list head
1461       guarantee(next != NULL, "thread=" INTPTR_FORMAT ": om_in_use_list=" INTPTR_FORMAT
1462                 " is too short.", p2i(self), p2i(self->om_in_use_list));
1463       // Our starting anchor is next after the list head which is the
1464       // last ObjectMonitor we checked:
1465       ObjectMonitor* anchor = next;
1466       while ((mid = unmarked_next(anchor)) != NULL) {
1467         if (m == mid) {
1468           // We found 'm' on the per-thread in-use list so extract it.
1469           om_lock(anchor);  // Lock the anchor so we can safely modify it.
1470           // Update next to what follows mid (if anything):
1471           next = unmarked_next(mid);
1472           // Switch next after the anchor to new next which unlocks the
1473           // anchor, but leaves the extracted mid locked:
1474           anchor->set_next_om(next);
1475           break;
1476         } else {
1477           anchor = mid;
1478         }
1479       }
1480     }
1481 
1482     if (mid == NULL) {
1483       // Reached end of the list and didn't find 'm' so:
1484       fatal("thread=" INTPTR_FORMAT " must find m=" INTPTR_FORMAT "on om_in_use_list="
1485             INTPTR_FORMAT, p2i(self), p2i(m), p2i(self->om_in_use_list));
1486     }
1487 
1488     // At this point mid is disconnected from the in-use list so
1489     // its lock no longer has any effects on the in-use list.
1490     Atomic::dec(&self->om_in_use_count);
1491     // Unlock mid, but leave the next value for any lagging list
1492     // walkers. It will get cleaned up when mid is prepended to
1493     // the thread's free list:
1494     om_unlock(mid);
1495   }
1496 
1497   prepend_to_om_free_list(self, m);
1498 }
1499 
1500 // Return ObjectMonitors on a moribund thread's free and in-use
1501 // lists to the appropriate global lists. The ObjectMonitors on the
1502 // per-thread in-use list may still be in use by other threads.
1503 //
1504 // We currently call om_flush() from Threads::remove() before the
1505 // thread has been excised from the thread list and is no longer a
1506 // mutator. This means that om_flush() cannot run concurrently with
1507 // a safepoint and interleave with deflate_idle_monitors(). In
1508 // particular, this ensures that the thread's in-use monitors are
1509 // scanned by a GC safepoint, either via Thread::oops_do() (before
1510 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1511 // om_flush() is called).
1512 
1513 void ObjectSynchronizer::om_flush(Thread* self) {
1514   // Process the per-thread in-use list first to be consistent.
1515   int in_use_count = 0;
1516   ObjectMonitor* in_use_list = NULL;
1517   ObjectMonitor* in_use_tail = NULL;
1518   NoSafepointVerifier nsv;
1519 
1520   // This function can race with a list walker thread so we lock the
1521   // list head to prevent confusion.
1522   if ((in_use_list = get_list_head_locked(&self->om_in_use_list)) != NULL) {
1523     // At this point, we have locked the in-use list head so a racing
1524     // thread cannot come in after us. However, a racing thread could
1525     // be ahead of us; we'll detect that and delay to let it finish.
1526     //
1527     // The thread is going away, however the ObjectMonitors on the
1528     // om_in_use_list may still be in-use by other threads. Link
1529     // them to in_use_tail, which will be linked into the global
1530     // in-use list (om_list_globals._in_use_list) below.
1531     //
1532     // Account for the in-use list head before the loop since it is
1533     // already locked (by this thread):
1534     in_use_tail = in_use_list;
1535     in_use_count++;
1536     for (ObjectMonitor* cur_om = unmarked_next(in_use_list); cur_om != NULL; cur_om = unmarked_next(cur_om)) {
1537       if (is_locked(cur_om)) {
1538         // cur_om is locked so there must be a racing walker thread ahead
1539         // of us so we'll give it a chance to finish.
1540         while (is_locked(cur_om)) {
1541           os::naked_short_sleep(1);
1542         }
1543       }
1544       in_use_tail = cur_om;
1545       in_use_count++;
1546     }
1547     guarantee(in_use_tail != NULL, "invariant");
1548     int l_om_in_use_count = Atomic::load(&self->om_in_use_count);
1549     assert(l_om_in_use_count == in_use_count, "in-use counts don't match: "
1550           "l_om_in_use_count=%d, in_use_count=%d", l_om_in_use_count, in_use_count);
1551     Atomic::store(&self->om_in_use_count, 0);
1552     // Clear the in-use list head (which also unlocks it):
1553     Atomic::store(&self->om_in_use_list, (ObjectMonitor*)NULL);
1554     om_unlock(in_use_list);
1555   }
1556 
1557   int free_count = 0;
1558   ObjectMonitor* free_list = NULL;
1559   ObjectMonitor* free_tail = NULL;
1560   // This function can race with a list walker thread so we lock the
1561   // list head to prevent confusion.
1562   if ((free_list = get_list_head_locked(&self->om_free_list)) != NULL) {
1563     // At this point, we have locked the free list head so a racing
1564     // thread cannot come in after us. However, a racing thread could
1565     // be ahead of us; we'll detect that and delay to let it finish.
1566     //
1567     // The thread is going away. Set 'free_tail' to the last per-thread free
1568     // monitor which will be linked to om_list_globals._free_list below.
1569     //
1570     // Account for the free list head before the loop since it is
1571     // already locked (by this thread):
1572     free_tail = free_list;
1573     free_count++;
1574     for (ObjectMonitor* s = unmarked_next(free_list); s != NULL; s = unmarked_next(s)) {
1575       if (is_locked(s)) {
1576         // s is locked so there must be a racing walker thread ahead
1577         // of us so we'll give it a chance to finish.
1578         while (is_locked(s)) {
1579           os::naked_short_sleep(1);
1580         }
1581       }
1582       free_tail = s;
1583       free_count++;
1584       guarantee(s->object() == NULL, "invariant");
1585       stringStream ss;
1586       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1587     }
1588     guarantee(free_tail != NULL, "invariant");
1589     int l_om_free_count = Atomic::load(&self->om_free_count);
1590     assert(l_om_free_count == free_count, "free counts don't match: "
1591            "l_om_free_count=%d, free_count=%d", l_om_free_count, free_count);
1592     Atomic::store(&self->om_free_count, 0);
1593     Atomic::store(&self->om_free_list, (ObjectMonitor*)NULL);
1594     om_unlock(free_list);
1595   }
1596 
1597   if (free_tail != NULL) {
1598     prepend_list_to_global_free_list(free_list, free_tail, free_count);
1599   }
1600 
1601   if (in_use_tail != NULL) {
1602     prepend_list_to_global_in_use_list(in_use_list, in_use_tail, in_use_count);
1603   }
1604 
1605   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1606   LogStreamHandle(Info, monitorinflation) lsh_info;
1607   LogStream* ls = NULL;
1608   if (log_is_enabled(Debug, monitorinflation)) {
1609     ls = &lsh_debug;
1610   } else if ((free_count != 0 || in_use_count != 0) &&
1611              log_is_enabled(Info, monitorinflation)) {
1612     ls = &lsh_info;
1613   }
1614   if (ls != NULL) {
1615     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1616                  ", in_use_count=%d" ", om_free_provision=%d",
1617                  p2i(self), free_count, in_use_count, self->om_free_provision);
1618   }
1619 }
1620 
1621 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1622                                        const oop obj,
1623                                        ObjectSynchronizer::InflateCause cause) {
1624   assert(event != NULL, "invariant");
1625   assert(event->should_commit(), "invariant");
1626   event->set_monitorClass(obj->klass());
1627   event->set_address((uintptr_t)(void*)obj);
1628   event->set_cause((u1)cause);
1629   event->commit();
1630 }
1631 
1632 // Fast path code shared by multiple functions
1633 void ObjectSynchronizer::inflate_helper(oop obj) {
1634   markWord mark = obj->mark();
1635   if (mark.has_monitor()) {
1636     assert(ObjectSynchronizer::verify_objmon_isinpool(mark.monitor()), "monitor is invalid");
1637     assert(mark.monitor()->header().is_neutral(), "monitor must record a good object header");
1638     return;
1639   }
1640   inflate(Thread::current(), obj, inflate_cause_vm_internal);
1641 }
1642 
1643 ObjectMonitor* ObjectSynchronizer::inflate(Thread* self,
1644                                            oop object, const InflateCause cause) {
1645   // Inflate mutates the heap ...
1646   // Relaxing assertion for bug 6320749.
1647   assert(Universe::verify_in_progress() ||
1648          !SafepointSynchronize::is_at_safepoint(), "invariant");
1649 
1650   EventJavaMonitorInflate event;
1651 
1652   for (;;) {
1653     const markWord mark = object->mark();
1654     assert(!mark.has_bias_pattern(), "invariant");
1655 
1656     // The mark can be in one of the following states:
1657     // *  Inflated     - just return
1658     // *  Stack-locked - coerce it to inflated
1659     // *  INFLATING    - busy wait for conversion to complete
1660     // *  Neutral      - aggressively inflate the object.
1661     // *  BIASED       - Illegal.  We should never see this
1662 
1663     // CASE: inflated
1664     if (mark.has_monitor()) {
1665       ObjectMonitor* inf = mark.monitor();
1666       markWord dmw = inf->header();
1667       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1668       assert(inf->object() == object, "invariant");
1669       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1670       return inf;
1671     }
1672 
1673     // CASE: inflation in progress - inflating over a stack-lock.
1674     // Some other thread is converting from stack-locked to inflated.
1675     // Only that thread can complete inflation -- other threads must wait.
1676     // The INFLATING value is transient.
1677     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1678     // We could always eliminate polling by parking the thread on some auxiliary list.
1679     if (mark == markWord::INFLATING()) {
1680       read_stable_mark(object);
1681       continue;
1682     }
1683 
1684     // CASE: stack-locked
1685     // Could be stack-locked either by this thread or by some other thread.
1686     //
1687     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1688     // to install INFLATING into the mark word.  We originally installed INFLATING,
1689     // allocated the objectmonitor, and then finally STed the address of the
1690     // objectmonitor into the mark.  This was correct, but artificially lengthened
1691     // the interval in which INFLATED appeared in the mark, thus increasing
1692     // the odds of inflation contention.
1693     //
1694     // We now use per-thread private objectmonitor free lists.
1695     // These list are reprovisioned from the global free list outside the
1696     // critical INFLATING...ST interval.  A thread can transfer
1697     // multiple objectmonitors en-mass from the global free list to its local free list.
1698     // This reduces coherency traffic and lock contention on the global free list.
1699     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1700     // before or after the CAS(INFLATING) operation.
1701     // See the comments in om_alloc().
1702 
1703     LogStreamHandle(Trace, monitorinflation) lsh;
1704 
1705     if (mark.has_locker()) {
1706       ObjectMonitor* m = om_alloc(self);
1707       // Optimistically prepare the objectmonitor - anticipate successful CAS
1708       // We do this before the CAS in order to minimize the length of time
1709       // in which INFLATING appears in the mark.
1710       m->Recycle();
1711       m->_Responsible  = NULL;
1712       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1713 
1714       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1715       if (cmp != mark) {
1716         om_release(self, m, true);
1717         continue;       // Interference -- just retry
1718       }
1719 
1720       // We've successfully installed INFLATING (0) into the mark-word.
1721       // This is the only case where 0 will appear in a mark-word.
1722       // Only the singular thread that successfully swings the mark-word
1723       // to 0 can perform (or more precisely, complete) inflation.
1724       //
1725       // Why do we CAS a 0 into the mark-word instead of just CASing the
1726       // mark-word from the stack-locked value directly to the new inflated state?
1727       // Consider what happens when a thread unlocks a stack-locked object.
1728       // It attempts to use CAS to swing the displaced header value from the
1729       // on-stack BasicLock back into the object header.  Recall also that the
1730       // header value (hash code, etc) can reside in (a) the object header, or
1731       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1732       // header in an ObjectMonitor.  The inflate() routine must copy the header
1733       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1734       // the while preserving the hashCode stability invariants.  If the owner
1735       // decides to release the lock while the value is 0, the unlock will fail
1736       // and control will eventually pass from slow_exit() to inflate.  The owner
1737       // will then spin, waiting for the 0 value to disappear.   Put another way,
1738       // the 0 causes the owner to stall if the owner happens to try to
1739       // drop the lock (restoring the header from the BasicLock to the object)
1740       // while inflation is in-progress.  This protocol avoids races that might
1741       // would otherwise permit hashCode values to change or "flicker" for an object.
1742       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1743       // 0 serves as a "BUSY" inflate-in-progress indicator.
1744 
1745 
1746       // fetch the displaced mark from the owner's stack.
1747       // The owner can't die or unwind past the lock while our INFLATING
1748       // object is in the mark.  Furthermore the owner can't complete
1749       // an unlock on the object, either.
1750       markWord dmw = mark.displaced_mark_helper();
1751       // Catch if the object's header is not neutral (not locked and
1752       // not marked is what we care about here).
1753       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1754 
1755       // Setup monitor fields to proper values -- prepare the monitor
1756       m->set_header(dmw);
1757 
1758       // Optimization: if the mark.locker stack address is associated
1759       // with this thread we could simply set m->_owner = self.
1760       // Note that a thread can inflate an object
1761       // that it has stack-locked -- as might happen in wait() -- directly
1762       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1763       m->set_owner_from(NULL, mark.locker());
1764       m->set_object(object);
1765       // TODO-FIXME: assert BasicLock->dhw != 0.
1766 
1767       // Must preserve store ordering. The monitor state must
1768       // be stable at the time of publishing the monitor address.
1769       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1770       object->release_set_mark(markWord::encode(m));
1771 
1772       // Hopefully the performance counters are allocated on distinct cache lines
1773       // to avoid false sharing on MP systems ...
1774       OM_PERFDATA_OP(Inflations, inc());
1775       if (log_is_enabled(Trace, monitorinflation)) {
1776         ResourceMark rm(self);
1777         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1778                      INTPTR_FORMAT ", type='%s'", p2i(object),
1779                      object->mark().value(), object->klass()->external_name());
1780       }
1781       if (event.should_commit()) {
1782         post_monitor_inflate_event(&event, object, cause);
1783       }
1784       return m;
1785     }
1786 
1787     // CASE: neutral
1788     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1789     // If we know we're inflating for entry it's better to inflate by swinging a
1790     // pre-locked ObjectMonitor pointer into the object header.   A successful
1791     // CAS inflates the object *and* confers ownership to the inflating thread.
1792     // In the current implementation we use a 2-step mechanism where we CAS()
1793     // to inflate and then CAS() again to try to swing _owner from NULL to self.
1794     // An inflateTry() method that we could call from enter() would be useful.
1795 
1796     // Catch if the object's header is not neutral (not locked and
1797     // not marked is what we care about here).
1798     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1799     ObjectMonitor* m = om_alloc(self);
1800     // prepare m for installation - set monitor to initial state
1801     m->Recycle();
1802     m->set_header(mark);
1803     m->set_object(object);
1804     m->_Responsible  = NULL;
1805     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1806 
1807     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1808       m->set_header(markWord::zero());
1809       m->set_object(NULL);
1810       m->Recycle();
1811       om_release(self, m, true);
1812       m = NULL;
1813       continue;
1814       // interference - the markword changed - just retry.
1815       // The state-transitions are one-way, so there's no chance of
1816       // live-lock -- "Inflated" is an absorbing state.
1817     }
1818 
1819     // Hopefully the performance counters are allocated on distinct
1820     // cache lines to avoid false sharing on MP systems ...
1821     OM_PERFDATA_OP(Inflations, inc());
1822     if (log_is_enabled(Trace, monitorinflation)) {
1823       ResourceMark rm(self);
1824       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1825                    INTPTR_FORMAT ", type='%s'", p2i(object),
1826                    object->mark().value(), object->klass()->external_name());
1827     }
1828     if (event.should_commit()) {
1829       post_monitor_inflate_event(&event, object, cause);
1830     }
1831     return m;
1832   }
1833 }
1834 
1835 
1836 // We maintain a list of in-use monitors for each thread.
1837 //
1838 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1839 // deflate_idle_monitors() scans only a global list of in-use monitors which
1840 // is populated only as a thread dies (see om_flush()).
1841 //
1842 // These operations are called at all safepoints, immediately after mutators
1843 // are stopped, but before any objects have moved. Collectively they traverse
1844 // the population of in-use monitors, deflating where possible. The scavenged
1845 // monitors are returned to the global monitor free list.
1846 //
1847 // Beware that we scavenge at *every* stop-the-world point. Having a large
1848 // number of monitors in-use could negatively impact performance. We also want
1849 // to minimize the total # of monitors in circulation, as they incur a small
1850 // footprint penalty.
1851 //
1852 // Perversely, the heap size -- and thus the STW safepoint rate --
1853 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1854 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1855 // This is an unfortunate aspect of this design.
1856 
1857 // Deflate a single monitor if not in-use
1858 // Return true if deflated, false if in-use
1859 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1860                                          ObjectMonitor** free_head_p,
1861                                          ObjectMonitor** free_tail_p) {
1862   bool deflated;
1863   // Normal case ... The monitor is associated with obj.
1864   const markWord mark = obj->mark();
1865   guarantee(mark == markWord::encode(mid), "should match: mark="
1866             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
1867             markWord::encode(mid).value());
1868   // Make sure that mark.monitor() and markWord::encode() agree:
1869   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1870             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
1871   const markWord dmw = mid->header();
1872   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1873 
1874   if (mid->is_busy()) {
1875     // Easy checks are first - the ObjectMonitor is busy so no deflation.
1876     deflated = false;
1877   } else {
1878     // Deflate the monitor if it is no longer being used
1879     // It's idle - scavenge and return to the global free list
1880     // plain old deflation ...
1881     if (log_is_enabled(Trace, monitorinflation)) {
1882       ResourceMark rm;
1883       log_trace(monitorinflation)("deflate_monitor: "
1884                                   "object=" INTPTR_FORMAT ", mark="
1885                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1886                                   mark.value(), obj->klass()->external_name());
1887     }
1888 
1889     // Restore the header back to obj
1890     obj->release_set_mark(dmw);
1891     mid->clear();
1892 
1893     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1894            p2i(mid->object()));
1895 
1896     // Move the deflated ObjectMonitor to the working free list
1897     // defined by free_head_p and free_tail_p.
1898     if (*free_head_p == NULL) *free_head_p = mid;
1899     if (*free_tail_p != NULL) {
1900       // We append to the list so the caller can use mid->_next_om
1901       // to fix the linkages in its context.
1902       ObjectMonitor* prevtail = *free_tail_p;
1903       // Should have been cleaned up by the caller:
1904       // Note: Should not have to lock prevtail here since we're at a
1905       // safepoint and ObjectMonitors on the local free list should
1906       // not be accessed in parallel.
1907 #ifdef ASSERT
1908       ObjectMonitor* l_next_om = prevtail->next_om();
1909 #endif
1910       assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
1911       prevtail->set_next_om(mid);
1912     }
1913     *free_tail_p = mid;
1914     // At this point, mid->_next_om still refers to its current
1915     // value and another ObjectMonitor's _next_om field still
1916     // refers to this ObjectMonitor. Those linkages have to be
1917     // cleaned up by the caller who has the complete context.
1918     deflated = true;
1919   }
1920   return deflated;
1921 }
1922 
1923 // Walk a given monitor list, and deflate idle monitors.
1924 // The given list could be a per-thread list or a global list.
1925 //
1926 // In the case of parallel processing of thread local monitor lists,
1927 // work is done by Threads::parallel_threads_do() which ensures that
1928 // each Java thread is processed by exactly one worker thread, and
1929 // thus avoid conflicts that would arise when worker threads would
1930 // process the same monitor lists concurrently.
1931 //
1932 // See also ParallelSPCleanupTask and
1933 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1934 // Threads::parallel_java_threads_do() in thread.cpp.
1935 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** list_p,
1936                                              int* count_p,
1937                                              ObjectMonitor** free_head_p,
1938                                              ObjectMonitor** free_tail_p) {
1939   ObjectMonitor* cur_mid_in_use = NULL;
1940   ObjectMonitor* mid = NULL;
1941   ObjectMonitor* next = NULL;
1942   int deflated_count = 0;
1943 
1944   // This list walk executes at a safepoint and does not race with any
1945   // other list walkers.
1946 
1947   for (mid = Atomic::load(list_p); mid != NULL; mid = next) {
1948     next = unmarked_next(mid);
1949     oop obj = (oop) mid->object();
1950     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
1951       // Deflation succeeded and already updated free_head_p and
1952       // free_tail_p as needed. Finish the move to the local free list
1953       // by unlinking mid from the global or per-thread in-use list.
1954       if (cur_mid_in_use == NULL) {
1955         // mid is the list head so switch the list head to next:
1956         Atomic::store(list_p, next);
1957       } else {
1958         // Switch cur_mid_in_use's next field to next:
1959         cur_mid_in_use->set_next_om(next);
1960       }
1961       // At this point mid is disconnected from the in-use list.
1962       deflated_count++;
1963       Atomic::dec(count_p);
1964       // mid is current tail in the free_head_p list so NULL terminate it:
1965       mid->set_next_om(NULL);
1966     } else {
1967       cur_mid_in_use = mid;
1968     }
1969   }
1970   return deflated_count;
1971 }
1972 
1973 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1974   counters->n_in_use = 0;              // currently associated with objects
1975   counters->n_in_circulation = 0;      // extant
1976   counters->n_scavenged = 0;           // reclaimed (global and per-thread)
1977   counters->per_thread_scavenged = 0;  // per-thread scavenge total
1978   counters->per_thread_times = 0.0;    // per-thread scavenge times
1979 }
1980 
1981 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
1982   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1983   bool deflated = false;
1984 
1985   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
1986   ObjectMonitor* free_tail_p = NULL;
1987   elapsedTimer timer;
1988 
1989   if (log_is_enabled(Info, monitorinflation)) {
1990     timer.start();
1991   }
1992 
1993   // Note: the thread-local monitors lists get deflated in
1994   // a separate pass. See deflate_thread_local_monitors().
1995 
1996   // For moribund threads, scan om_list_globals._in_use_list
1997   int deflated_count = 0;
1998   if (Atomic::load(&om_list_globals._in_use_list) != NULL) {
1999     // Update n_in_circulation before om_list_globals._in_use_count is
2000     // updated by deflation.
2001     Atomic::add(&counters->n_in_circulation,
2002                 Atomic::load(&om_list_globals._in_use_count));
2003 
2004     deflated_count = deflate_monitor_list(&om_list_globals._in_use_list,
2005                                           &om_list_globals._in_use_count,
2006                                           &free_head_p, &free_tail_p);
2007     Atomic::add(&counters->n_in_use, Atomic::load(&om_list_globals._in_use_count));
2008   }
2009 
2010   if (free_head_p != NULL) {
2011     // Move the deflated ObjectMonitors back to the global free list.
2012     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2013 #ifdef ASSERT
2014     ObjectMonitor* l_next_om = free_tail_p->next_om();
2015 #endif
2016     assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2017     prepend_list_to_global_free_list(free_head_p, free_tail_p, deflated_count);
2018     Atomic::add(&counters->n_scavenged, deflated_count);
2019   }
2020   timer.stop();
2021 
2022   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2023   LogStreamHandle(Info, monitorinflation) lsh_info;
2024   LogStream* ls = NULL;
2025   if (log_is_enabled(Debug, monitorinflation)) {
2026     ls = &lsh_debug;
2027   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2028     ls = &lsh_info;
2029   }
2030   if (ls != NULL) {
2031     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2032   }
2033 }
2034 
2035 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2036   // Report the cumulative time for deflating each thread's idle
2037   // monitors. Note: if the work is split among more than one
2038   // worker thread, then the reported time will likely be more
2039   // than a beginning to end measurement of the phase.
2040   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged);
2041 
2042   if (log_is_enabled(Debug, monitorinflation)) {
2043     // exit_globals()'s call to audit_and_print_stats() is done
2044     // at the Info level and not at a safepoint.
2045     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2046   } else if (log_is_enabled(Info, monitorinflation)) {
2047     log_info(monitorinflation)("global_population=%d, global_in_use_count=%d, "
2048                                "global_free_count=%d",
2049                                Atomic::load(&om_list_globals._population),
2050                                Atomic::load(&om_list_globals._in_use_count),
2051                                Atomic::load(&om_list_globals._free_count));
2052   }
2053 
2054   Atomic::store(&_forceMonitorScavenge, 0);    // Reset
2055 
2056   OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2057   OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2058 
2059   GVars.stw_random = os::random();
2060   GVars.stw_cycle++;
2061 }
2062 
2063 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2064   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2065 
2066   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2067   ObjectMonitor* free_tail_p = NULL;
2068   elapsedTimer timer;
2069 
2070   if (log_is_enabled(Info, safepoint, cleanup) ||
2071       log_is_enabled(Info, monitorinflation)) {
2072     timer.start();
2073   }
2074 
2075   // Update n_in_circulation before om_in_use_count is updated by deflation.
2076   Atomic::add(&counters->n_in_circulation, Atomic::load(&thread->om_in_use_count));
2077 
2078   int deflated_count = deflate_monitor_list(&thread->om_in_use_list, &thread->om_in_use_count, &free_head_p, &free_tail_p);
2079   Atomic::add(&counters->n_in_use, Atomic::load(&thread->om_in_use_count));
2080 
2081   if (free_head_p != NULL) {
2082     // Move the deflated ObjectMonitors back to the global free list.
2083     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2084 #ifdef ASSERT
2085     ObjectMonitor* l_next_om = free_tail_p->next_om();
2086 #endif
2087     assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2088     prepend_list_to_global_free_list(free_head_p, free_tail_p, deflated_count);
2089     Atomic::add(&counters->n_scavenged, deflated_count);
2090     Atomic::add(&counters->per_thread_scavenged, deflated_count);
2091   }
2092 
2093   timer.stop();
2094   counters->per_thread_times += timer.seconds();
2095 
2096   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2097   LogStreamHandle(Info, monitorinflation) lsh_info;
2098   LogStream* ls = NULL;
2099   if (log_is_enabled(Debug, monitorinflation)) {
2100     ls = &lsh_debug;
2101   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2102     ls = &lsh_info;
2103   }
2104   if (ls != NULL) {
2105     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2106   }
2107 }
2108 
2109 // Monitor cleanup on JavaThread::exit
2110 
2111 // Iterate through monitor cache and attempt to release thread's monitors
2112 // Gives up on a particular monitor if an exception occurs, but continues
2113 // the overall iteration, swallowing the exception.
2114 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2115  private:
2116   TRAPS;
2117 
2118  public:
2119   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2120   void do_monitor(ObjectMonitor* mid) {
2121     if (mid->owner() == THREAD) {
2122       // Note well -- this occurs ONLY on thread exit, and is a last ditch
2123       // effort to release all locks. Hence, we don't need to record tsan's
2124       // recursion count -- it will never be locked again.
2125       TSAN_RUNTIME_ONLY(SharedRuntime::tsan_oop_rec_unlock(THREAD, (oop)mid->object()));
2126       (void)mid->complete_exit(CHECK);
2127     }
2128   }
2129 };
2130 
2131 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2132 // ignored.  This is meant to be called during JNI thread detach which assumes
2133 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2134 // Scanning the extant monitor list can be time consuming.
2135 // A simple optimization is to add a per-thread flag that indicates a thread
2136 // called jni_monitorenter() during its lifetime.
2137 //
2138 // Instead of No_Savepoint_Verifier it might be cheaper to
2139 // use an idiom of the form:
2140 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2141 //   <code that must not run at safepoint>
2142 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2143 // Since the tests are extremely cheap we could leave them enabled
2144 // for normal product builds.
2145 
2146 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2147   assert(THREAD == JavaThread::current(), "must be current Java thread");
2148   NoSafepointVerifier nsv;
2149   ReleaseJavaMonitorsClosure rjmc(THREAD);
2150   ObjectSynchronizer::monitors_iterate(&rjmc);
2151   THREAD->clear_pending_exception();
2152 }
2153 
2154 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2155   switch (cause) {
2156     case inflate_cause_vm_internal:    return "VM Internal";
2157     case inflate_cause_monitor_enter:  return "Monitor Enter";
2158     case inflate_cause_wait:           return "Monitor Wait";
2159     case inflate_cause_notify:         return "Monitor Notify";
2160     case inflate_cause_hash_code:      return "Monitor Hash Code";
2161     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2162     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2163     default:
2164       ShouldNotReachHere();
2165   }
2166   return "Unknown";
2167 }
2168 
2169 //------------------------------------------------------------------------------
2170 // Debugging code
2171 
2172 u_char* ObjectSynchronizer::get_gvars_addr() {
2173   return (u_char*)&GVars;
2174 }
2175 
2176 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
2177   return (u_char*)&GVars.hc_sequence;
2178 }
2179 
2180 size_t ObjectSynchronizer::get_gvars_size() {
2181   return sizeof(SharedGlobals);
2182 }
2183 
2184 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
2185   return (u_char*)&GVars.stw_random;
2186 }
2187 
2188 // This function can be called at a safepoint or it can be called when
2189 // we are trying to exit the VM. When we are trying to exit the VM, the
2190 // list walker functions can run in parallel with the other list
2191 // operations so spin-locking is used for safety.
2192 //
2193 // Calls to this function can be added in various places as a debugging
2194 // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor
2195 // details logged at the Info level and 'false' for the 'on_exit'
2196 // parameter to have in-use monitor details logged at the Trace level.
2197 // deflate_monitor_list() no longer uses spin-locking so be careful
2198 // when adding audit_and_print_stats() calls at a safepoint.
2199 //
2200 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2201   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2202 
2203   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2204   LogStreamHandle(Info, monitorinflation) lsh_info;
2205   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2206   LogStream* ls = NULL;
2207   if (log_is_enabled(Trace, monitorinflation)) {
2208     ls = &lsh_trace;
2209   } else if (log_is_enabled(Debug, monitorinflation)) {
2210     ls = &lsh_debug;
2211   } else if (log_is_enabled(Info, monitorinflation)) {
2212     ls = &lsh_info;
2213   }
2214   assert(ls != NULL, "sanity check");
2215 
2216   // Log counts for the global and per-thread monitor lists:
2217   int chk_om_population = log_monitor_list_counts(ls);
2218   int error_cnt = 0;
2219 
2220   ls->print_cr("Checking global lists:");
2221 
2222   // Check om_list_globals._population:
2223   if (Atomic::load(&om_list_globals._population) == chk_om_population) {
2224     ls->print_cr("global_population=%d equals chk_om_population=%d",
2225                  Atomic::load(&om_list_globals._population), chk_om_population);
2226   } else {
2227     // With fine grained locks on the monitor lists, it is possible for
2228     // log_monitor_list_counts() to return a value that doesn't match
2229     // om_list_globals._population. So far a higher value has been
2230     // seen in testing so something is being double counted by
2231     // log_monitor_list_counts().
2232     ls->print_cr("WARNING: global_population=%d is not equal to "
2233                  "chk_om_population=%d",
2234                  Atomic::load(&om_list_globals._population), chk_om_population);
2235   }
2236 
2237   // Check om_list_globals._in_use_list and om_list_globals._in_use_count:
2238   chk_global_in_use_list_and_count(ls, &error_cnt);
2239 
2240   // Check om_list_globals._free_list and om_list_globals._free_count:
2241   chk_global_free_list_and_count(ls, &error_cnt);
2242 
2243   ls->print_cr("Checking per-thread lists:");
2244 
2245   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2246     // Check om_in_use_list and om_in_use_count:
2247     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2248 
2249     // Check om_free_list and om_free_count:
2250     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2251   }
2252 
2253   if (error_cnt == 0) {
2254     ls->print_cr("No errors found in monitor list checks.");
2255   } else {
2256     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2257   }
2258 
2259   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2260       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2261     // When exiting this log output is at the Info level. When called
2262     // at a safepoint, this log output is at the Trace level since
2263     // there can be a lot of it.
2264     log_in_use_monitor_details(ls);
2265   }
2266 
2267   ls->flush();
2268 
2269   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2270 }
2271 
2272 // Check a free monitor entry; log any errors.
2273 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
2274                                         outputStream * out, int *error_cnt_p) {
2275   stringStream ss;
2276   if (n->is_busy()) {
2277     if (jt != NULL) {
2278       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2279                     ": free per-thread monitor must not be busy: %s", p2i(jt),
2280                     p2i(n), n->is_busy_to_string(&ss));
2281     } else {
2282       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2283                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
2284     }
2285     *error_cnt_p = *error_cnt_p + 1;
2286   }
2287   if (n->header().value() != 0) {
2288     if (jt != NULL) {
2289       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2290                     ": free per-thread monitor must have NULL _header "
2291                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
2292                     n->header().value());
2293     } else {
2294       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2295                     "must have NULL _header field: _header=" INTPTR_FORMAT,
2296                     p2i(n), n->header().value());
2297     }
2298     *error_cnt_p = *error_cnt_p + 1;
2299   }
2300   if (n->object() != NULL) {
2301     if (jt != NULL) {
2302       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2303                     ": free per-thread monitor must have NULL _object "
2304                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
2305                     p2i(n->object()));
2306     } else {
2307       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2308                     "must have NULL _object field: _object=" INTPTR_FORMAT,
2309                     p2i(n), p2i(n->object()));
2310     }
2311     *error_cnt_p = *error_cnt_p + 1;
2312   }
2313 }
2314 
2315 // Lock the next ObjectMonitor for traversal and unlock the current
2316 // ObjectMonitor. Returns the next ObjectMonitor if there is one.
2317 // Otherwise returns NULL (after unlocking the current ObjectMonitor).
2318 // This function is used by the various list walker functions to
2319 // safely walk a list without allowing an ObjectMonitor to be moved
2320 // to another list in the middle of a walk.
2321 static ObjectMonitor* lock_next_for_traversal(ObjectMonitor* cur) {
2322   assert(is_locked(cur), "cur=" INTPTR_FORMAT " must be locked", p2i(cur));
2323   ObjectMonitor* next = unmarked_next(cur);
2324   if (next == NULL) {  // Reached the end of the list.
2325     om_unlock(cur);
2326     return NULL;
2327   }
2328   om_lock(next);   // Lock next before unlocking current to keep
2329   om_unlock(cur);  // from being by-passed by another thread.
2330   return next;
2331 }
2332 
2333 // Check the global free list and count; log the results of the checks.
2334 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
2335                                                         int *error_cnt_p) {
2336   int chk_om_free_count = 0;
2337   ObjectMonitor* cur = NULL;
2338   if ((cur = get_list_head_locked(&om_list_globals._free_list)) != NULL) {
2339     // Marked the global free list head so process the list.
2340     while (true) {
2341       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
2342       chk_om_free_count++;
2343 
2344       cur = lock_next_for_traversal(cur);
2345       if (cur == NULL) {
2346         break;
2347       }
2348     }
2349   }
2350   int l_free_count = Atomic::load(&om_list_globals._free_count);
2351   if (l_free_count == chk_om_free_count) {
2352     out->print_cr("global_free_count=%d equals chk_om_free_count=%d",
2353                   l_free_count, chk_om_free_count);
2354   } else {
2355     // With fine grained locks on om_list_globals._free_list, it
2356     // is possible for an ObjectMonitor to be prepended to
2357     // om_list_globals._free_list after we started calculating
2358     // chk_om_free_count so om_list_globals._free_count may not
2359     // match anymore.
2360     out->print_cr("WARNING: global_free_count=%d is not equal to "
2361                   "chk_om_free_count=%d", l_free_count, chk_om_free_count);
2362   }
2363 }
2364 
2365 // Check the global in-use list and count; log the results of the checks.
2366 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
2367                                                           int *error_cnt_p) {
2368   int chk_om_in_use_count = 0;
2369   ObjectMonitor* cur = NULL;
2370   if ((cur = get_list_head_locked(&om_list_globals._in_use_list)) != NULL) {
2371     // Marked the global in-use list head so process the list.
2372     while (true) {
2373       chk_in_use_entry(NULL /* jt */, cur, out, error_cnt_p);
2374       chk_om_in_use_count++;
2375 
2376       cur = lock_next_for_traversal(cur);
2377       if (cur == NULL) {
2378         break;
2379       }
2380     }
2381   }
2382   int l_in_use_count = Atomic::load(&om_list_globals._in_use_count);
2383   if (l_in_use_count == chk_om_in_use_count) {
2384     out->print_cr("global_in_use_count=%d equals chk_om_in_use_count=%d",
2385                   l_in_use_count, chk_om_in_use_count);
2386   } else {
2387     // With fine grained locks on the monitor lists, it is possible for
2388     // an exiting JavaThread to put its in-use ObjectMonitors on the
2389     // global in-use list after chk_om_in_use_count is calculated above.
2390     out->print_cr("WARNING: global_in_use_count=%d is not equal to chk_om_in_use_count=%d",
2391                   l_in_use_count, chk_om_in_use_count);
2392   }
2393 }
2394 
2395 // Check an in-use monitor entry; log any errors.
2396 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
2397                                           outputStream * out, int *error_cnt_p) {
2398   if (n->header().value() == 0) {
2399     if (jt != NULL) {
2400       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2401                     ": in-use per-thread monitor must have non-NULL _header "
2402                     "field.", p2i(jt), p2i(n));
2403     } else {
2404       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2405                     "must have non-NULL _header field.", p2i(n));
2406     }
2407     *error_cnt_p = *error_cnt_p + 1;
2408   }
2409   if (n->object() == NULL) {
2410     if (jt != NULL) {
2411       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2412                     ": in-use per-thread monitor must have non-NULL _object "
2413                     "field.", p2i(jt), p2i(n));
2414     } else {
2415       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2416                     "must have non-NULL _object field.", p2i(n));
2417     }
2418     *error_cnt_p = *error_cnt_p + 1;
2419   }
2420   const oop obj = (oop)n->object();
2421   const markWord mark = obj->mark();
2422   if (!mark.has_monitor()) {
2423     if (jt != NULL) {
2424       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2425                     ": in-use per-thread monitor's object does not think "
2426                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2427                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), mark.value());
2428     } else {
2429       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2430                     "monitor's object does not think it has a monitor: obj="
2431                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2432                     p2i(obj), mark.value());
2433     }
2434     *error_cnt_p = *error_cnt_p + 1;
2435   }
2436   ObjectMonitor* const obj_mon = mark.monitor();
2437   if (n != obj_mon) {
2438     if (jt != NULL) {
2439       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2440                     ": in-use per-thread monitor's object does not refer "
2441                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2442                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2443                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2444     } else {
2445       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2446                     "monitor's object does not refer to the same monitor: obj="
2447                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2448                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2449     }
2450     *error_cnt_p = *error_cnt_p + 1;
2451   }
2452 }
2453 
2454 // Check the thread's free list and count; log the results of the checks.
2455 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2456                                                             outputStream * out,
2457                                                             int *error_cnt_p) {
2458   int chk_om_free_count = 0;
2459   ObjectMonitor* cur = NULL;
2460   if ((cur = get_list_head_locked(&jt->om_free_list)) != NULL) {
2461     // Marked the per-thread free list head so process the list.
2462     while (true) {
2463       chk_free_entry(jt, cur, out, error_cnt_p);
2464       chk_om_free_count++;
2465 
2466       cur = lock_next_for_traversal(cur);
2467       if (cur == NULL) {
2468         break;
2469       }
2470     }
2471   }
2472   int l_om_free_count = Atomic::load(&jt->om_free_count);
2473   if (l_om_free_count == chk_om_free_count) {
2474     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
2475                   "chk_om_free_count=%d", p2i(jt), l_om_free_count, chk_om_free_count);
2476   } else {
2477     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
2478                   "equal to chk_om_free_count=%d", p2i(jt), l_om_free_count,
2479                   chk_om_free_count);
2480     *error_cnt_p = *error_cnt_p + 1;
2481   }
2482 }
2483 
2484 // Check the thread's in-use list and count; log the results of the checks.
2485 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2486                                                               outputStream * out,
2487                                                               int *error_cnt_p) {
2488   int chk_om_in_use_count = 0;
2489   ObjectMonitor* cur = NULL;
2490   if ((cur = get_list_head_locked(&jt->om_in_use_list)) != NULL) {
2491     // Marked the per-thread in-use list head so process the list.
2492     while (true) {
2493       chk_in_use_entry(jt, cur, out, error_cnt_p);
2494       chk_om_in_use_count++;
2495 
2496       cur = lock_next_for_traversal(cur);
2497       if (cur == NULL) {
2498         break;
2499       }
2500     }
2501   }
2502   int l_om_in_use_count = Atomic::load(&jt->om_in_use_count);
2503   if (l_om_in_use_count == chk_om_in_use_count) {
2504     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
2505                   "chk_om_in_use_count=%d", p2i(jt), l_om_in_use_count,
2506                   chk_om_in_use_count);
2507   } else {
2508     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
2509                   "equal to chk_om_in_use_count=%d", p2i(jt), l_om_in_use_count,
2510                   chk_om_in_use_count);
2511     *error_cnt_p = *error_cnt_p + 1;
2512   }
2513 }
2514 
2515 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2516 // flags indicate why the entry is in-use, 'object' and 'object type'
2517 // indicate the associated object and its type.
2518 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out) {
2519   stringStream ss;
2520   if (Atomic::load(&om_list_globals._in_use_count) > 0) {
2521     out->print_cr("In-use global monitor info:");
2522     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2523     out->print_cr("%18s  %s  %18s  %18s",
2524                   "monitor", "BHL", "object", "object type");
2525     out->print_cr("==================  ===  ==================  ==================");
2526     ObjectMonitor* cur = NULL;
2527     if ((cur = get_list_head_locked(&om_list_globals._in_use_list)) != NULL) {
2528       // Marked the global in-use list head so process the list.
2529       while (true) {
2530         const oop obj = (oop) cur->object();
2531         const markWord mark = cur->header();
2532         ResourceMark rm;
2533         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(cur),
2534                    cur->is_busy() != 0, mark.hash() != 0, cur->owner() != NULL,
2535                    p2i(obj), obj->klass()->external_name());
2536         if (cur->is_busy() != 0) {
2537           out->print(" (%s)", cur->is_busy_to_string(&ss));
2538           ss.reset();
2539         }
2540         out->cr();
2541 
2542         cur = lock_next_for_traversal(cur);
2543         if (cur == NULL) {
2544           break;
2545         }
2546       }
2547     }
2548   }
2549 
2550   out->print_cr("In-use per-thread monitor info:");
2551   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2552   out->print_cr("%18s  %18s  %s  %18s  %18s",
2553                 "jt", "monitor", "BHL", "object", "object type");
2554   out->print_cr("==================  ==================  ===  ==================  ==================");
2555   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2556     ObjectMonitor* cur = NULL;
2557     if ((cur = get_list_head_locked(&jt->om_in_use_list)) != NULL) {
2558       // Marked the global in-use list head so process the list.
2559       while (true) {
2560         const oop obj = (oop) cur->object();
2561         const markWord mark = cur->header();
2562         ResourceMark rm;
2563         out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT
2564                    "  %s", p2i(jt), p2i(cur), cur->is_busy() != 0,
2565                    mark.hash() != 0, cur->owner() != NULL, p2i(obj),
2566                    obj->klass()->external_name());
2567         if (cur->is_busy() != 0) {
2568           out->print(" (%s)", cur->is_busy_to_string(&ss));
2569           ss.reset();
2570         }
2571         out->cr();
2572 
2573         cur = lock_next_for_traversal(cur);
2574         if (cur == NULL) {
2575           break;
2576         }
2577       }
2578     }
2579   }
2580 
2581   out->flush();
2582 }
2583 
2584 // Log counts for the global and per-thread monitor lists and return
2585 // the population count.
2586 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2587   int pop_count = 0;
2588   out->print_cr("%18s  %10s  %10s  %10s",
2589                 "Global Lists:", "InUse", "Free", "Total");
2590   out->print_cr("==================  ==========  ==========  ==========");
2591   int l_in_use_count = Atomic::load(&om_list_globals._in_use_count);
2592   int l_free_count = Atomic::load(&om_list_globals._free_count);
2593   out->print_cr("%18s  %10d  %10d  %10d", "", l_in_use_count,
2594                 l_free_count, Atomic::load(&om_list_globals._population));
2595   pop_count += l_in_use_count + l_free_count;
2596 
2597   out->print_cr("%18s  %10s  %10s  %10s",
2598                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2599   out->print_cr("==================  ==========  ==========  ==========");
2600 
2601   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2602     int l_om_in_use_count = Atomic::load(&jt->om_in_use_count);
2603     int l_om_free_count = Atomic::load(&jt->om_free_count);
2604     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2605                   l_om_in_use_count, l_om_free_count, jt->om_free_provision);
2606     pop_count += l_om_in_use_count + l_om_free_count;
2607   }
2608   return pop_count;
2609 }
2610 
2611 #ifndef PRODUCT
2612 
2613 // Check if monitor belongs to the monitor cache
2614 // The list is grow-only so it's *relatively* safe to traverse
2615 // the list of extant blocks without taking a lock.
2616 
2617 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2618   PaddedObjectMonitor* block = Atomic::load(&g_block_list);
2619   while (block != NULL) {
2620     assert(block->object() == CHAINMARKER, "must be a block header");
2621     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2622       address mon = (address)monitor;
2623       address blk = (address)block;
2624       size_t diff = mon - blk;
2625       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
2626       return 1;
2627     }
2628     // unmarked_next() is not needed with g_block_list (no locking
2629     // used with block linkage _next_om fields).
2630     block = (PaddedObjectMonitor*)block->next_om();
2631   }
2632   return 0;
2633 }
2634 
2635 #endif