1 /*
2 * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "jvm.h"
27 #include "aot/aotLoader.hpp"
28 #include "classfile/stringTable.hpp"
29 #include "classfile/systemDictionary.hpp"
30 #include "classfile/vmSymbols.hpp"
31 #include "code/codeCache.hpp"
32 #include "code/compiledIC.hpp"
33 #include "code/icBuffer.hpp"
34 #include "code/compiledMethod.inline.hpp"
35 #include "code/scopeDesc.hpp"
36 #include "code/vtableStubs.hpp"
37 #include "compiler/abstractCompiler.hpp"
38 #include "compiler/compileBroker.hpp"
39 #include "compiler/disassembler.hpp"
40 #include "gc/shared/barrierSet.hpp"
41 #include "gc/shared/gcLocker.inline.hpp"
42 #include "interpreter/interpreter.hpp"
43 #include "interpreter/interpreterRuntime.hpp"
44 #include "jfr/jfrEvents.hpp"
45 #include "logging/log.hpp"
46 #include "memory/metaspaceShared.hpp"
47 #include "memory/resourceArea.hpp"
48 #include "memory/universe.hpp"
49 #include "oops/klass.hpp"
50 #include "oops/method.inline.hpp"
51 #include "oops/objArrayKlass.hpp"
52 #include "oops/oop.inline.hpp"
53 #include "prims/forte.hpp"
54 #include "prims/jvmtiExport.hpp"
55 #include "prims/methodHandles.hpp"
56 #include "prims/nativeLookup.hpp"
57 #include "runtime/arguments.hpp"
58 #include "runtime/atomic.hpp"
59 #include "runtime/biasedLocking.hpp"
60 #include "runtime/frame.inline.hpp"
61 #include "runtime/handles.inline.hpp"
62 #include "runtime/init.hpp"
63 #include "runtime/interfaceSupport.inline.hpp"
64 #include "runtime/java.hpp"
65 #include "runtime/javaCalls.hpp"
66 #include "runtime/sharedRuntime.hpp"
67 #include "runtime/stubRoutines.hpp"
68 #include "runtime/vframe.inline.hpp"
69 #include "runtime/vframeArray.hpp"
70 #include "utilities/copy.hpp"
71 #include "utilities/dtrace.hpp"
72 #include "utilities/events.hpp"
73 #include "utilities/hashtable.inline.hpp"
74 #include "utilities/macros.hpp"
75 #include "utilities/xmlstream.hpp"
76 #ifdef COMPILER1
77 #include "c1/c1_Runtime1.hpp"
78 #endif
79 #if INCLUDE_TSAN
80 #include "tsan/tsanExternalDecls.hpp"
81 #include "tsan/tsanOopMap.hpp"
82 #endif
83
84 // Shared stub locations
85 RuntimeStub* SharedRuntime::_wrong_method_blob;
86 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob;
87 RuntimeStub* SharedRuntime::_ic_miss_blob;
88 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
89 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
90 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
91 address SharedRuntime::_resolve_static_call_entry;
92
93 DeoptimizationBlob* SharedRuntime::_deopt_blob;
94 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
95 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
96 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
97
98 #ifdef COMPILER2
99 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
100 #endif // COMPILER2
101
102
103 //----------------------------generate_stubs-----------------------------------
104 void SharedRuntime::generate_stubs() {
105 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
106 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
107 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
108 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
109 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
110 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
111 _resolve_static_call_entry = _resolve_static_call_blob->entry_point();
112
113 #if COMPILER2_OR_JVMCI
114 // Vectors are generated only by C2 and JVMCI.
115 bool support_wide = is_wide_vector(MaxVectorSize);
116 if (support_wide) {
117 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
118 }
119 #endif // COMPILER2_OR_JVMCI
120 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
121 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
122
123 generate_deopt_blob();
124
125 #ifdef COMPILER2
126 generate_uncommon_trap_blob();
127 #endif // COMPILER2
128 }
129
130 #include <math.h>
131
132 // Implementation of SharedRuntime
133
134 #ifndef PRODUCT
135 // For statistics
136 int SharedRuntime::_ic_miss_ctr = 0;
137 int SharedRuntime::_wrong_method_ctr = 0;
138 int SharedRuntime::_resolve_static_ctr = 0;
139 int SharedRuntime::_resolve_virtual_ctr = 0;
140 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
141 int SharedRuntime::_implicit_null_throws = 0;
142 int SharedRuntime::_implicit_div0_throws = 0;
143 int SharedRuntime::_throw_null_ctr = 0;
144
145 int SharedRuntime::_nof_normal_calls = 0;
146 int SharedRuntime::_nof_optimized_calls = 0;
147 int SharedRuntime::_nof_inlined_calls = 0;
148 int SharedRuntime::_nof_megamorphic_calls = 0;
149 int SharedRuntime::_nof_static_calls = 0;
150 int SharedRuntime::_nof_inlined_static_calls = 0;
151 int SharedRuntime::_nof_interface_calls = 0;
152 int SharedRuntime::_nof_optimized_interface_calls = 0;
153 int SharedRuntime::_nof_inlined_interface_calls = 0;
154 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
155 int SharedRuntime::_nof_removable_exceptions = 0;
156
157 int SharedRuntime::_new_instance_ctr=0;
158 int SharedRuntime::_new_array_ctr=0;
159 int SharedRuntime::_multi1_ctr=0;
160 int SharedRuntime::_multi2_ctr=0;
161 int SharedRuntime::_multi3_ctr=0;
162 int SharedRuntime::_multi4_ctr=0;
163 int SharedRuntime::_multi5_ctr=0;
164 int SharedRuntime::_mon_enter_stub_ctr=0;
165 int SharedRuntime::_mon_exit_stub_ctr=0;
166 int SharedRuntime::_mon_enter_ctr=0;
167 int SharedRuntime::_mon_exit_ctr=0;
168 int SharedRuntime::_partial_subtype_ctr=0;
169 int SharedRuntime::_jbyte_array_copy_ctr=0;
170 int SharedRuntime::_jshort_array_copy_ctr=0;
171 int SharedRuntime::_jint_array_copy_ctr=0;
172 int SharedRuntime::_jlong_array_copy_ctr=0;
173 int SharedRuntime::_oop_array_copy_ctr=0;
174 int SharedRuntime::_checkcast_array_copy_ctr=0;
175 int SharedRuntime::_unsafe_array_copy_ctr=0;
176 int SharedRuntime::_generic_array_copy_ctr=0;
177 int SharedRuntime::_slow_array_copy_ctr=0;
178 int SharedRuntime::_find_handler_ctr=0;
179 int SharedRuntime::_rethrow_ctr=0;
180
181 int SharedRuntime::_ICmiss_index = 0;
182 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
184
185
186 void SharedRuntime::trace_ic_miss(address at) {
187 for (int i = 0; i < _ICmiss_index; i++) {
188 if (_ICmiss_at[i] == at) {
189 _ICmiss_count[i]++;
190 return;
191 }
192 }
193 int index = _ICmiss_index++;
194 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
195 _ICmiss_at[index] = at;
196 _ICmiss_count[index] = 1;
197 }
198
199 void SharedRuntime::print_ic_miss_histogram() {
200 if (ICMissHistogram) {
201 tty->print_cr("IC Miss Histogram:");
202 int tot_misses = 0;
203 for (int i = 0; i < _ICmiss_index; i++) {
204 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
205 tot_misses += _ICmiss_count[i];
206 }
207 tty->print_cr("Total IC misses: %7d", tot_misses);
208 }
209 }
210 #endif // PRODUCT
211
212
213 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
214 return x * y;
215 JRT_END
216
217
218 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
219 if (x == min_jlong && y == CONST64(-1)) {
220 return x;
221 } else {
222 return x / y;
223 }
224 JRT_END
225
226
227 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
228 if (x == min_jlong && y == CONST64(-1)) {
229 return 0;
230 } else {
231 return x % y;
232 }
233 JRT_END
234
235
236 const juint float_sign_mask = 0x7FFFFFFF;
237 const juint float_infinity = 0x7F800000;
238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
239 const julong double_infinity = CONST64(0x7FF0000000000000);
240
241 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
242 #ifdef _WIN64
243 // 64-bit Windows on amd64 returns the wrong values for
244 // infinity operands.
245 union { jfloat f; juint i; } xbits, ybits;
246 xbits.f = x;
247 ybits.f = y;
248 // x Mod Infinity == x unless x is infinity
249 if (((xbits.i & float_sign_mask) != float_infinity) &&
250 ((ybits.i & float_sign_mask) == float_infinity) ) {
251 return x;
252 }
253 return ((jfloat)fmod_winx64((double)x, (double)y));
254 #else
255 return ((jfloat)fmod((double)x,(double)y));
256 #endif
257 JRT_END
258
259
260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
261 #ifdef _WIN64
262 union { jdouble d; julong l; } xbits, ybits;
263 xbits.d = x;
264 ybits.d = y;
265 // x Mod Infinity == x unless x is infinity
266 if (((xbits.l & double_sign_mask) != double_infinity) &&
267 ((ybits.l & double_sign_mask) == double_infinity) ) {
268 return x;
269 }
270 return ((jdouble)fmod_winx64((double)x, (double)y));
271 #else
272 return ((jdouble)fmod((double)x,(double)y));
273 #endif
274 JRT_END
275
276 #ifdef __SOFTFP__
277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
278 return x + y;
279 JRT_END
280
281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
282 return x - y;
283 JRT_END
284
285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
286 return x * y;
287 JRT_END
288
289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
290 return x / y;
291 JRT_END
292
293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
294 return x + y;
295 JRT_END
296
297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
298 return x - y;
299 JRT_END
300
301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
302 return x * y;
303 JRT_END
304
305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
306 return x / y;
307 JRT_END
308
309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
310 return (jfloat)x;
311 JRT_END
312
313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
314 return (jdouble)x;
315 JRT_END
316
317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
318 return (jdouble)x;
319 JRT_END
320
321 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
322 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
323 JRT_END
324
325 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
326 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
327 JRT_END
328
329 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
330 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
331 JRT_END
332
333 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
334 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
335 JRT_END
336
337 // Functions to return the opposite of the aeabi functions for nan.
338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
339 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
340 JRT_END
341
342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
343 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
344 JRT_END
345
346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
347 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
348 JRT_END
349
350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
351 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
352 JRT_END
353
354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
355 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
356 JRT_END
357
358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
359 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
360 JRT_END
361
362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
363 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
364 JRT_END
365
366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
367 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
368 JRT_END
369
370 // Intrinsics make gcc generate code for these.
371 float SharedRuntime::fneg(float f) {
372 return -f;
373 }
374
375 double SharedRuntime::dneg(double f) {
376 return -f;
377 }
378
379 #endif // __SOFTFP__
380
381 #if defined(__SOFTFP__) || defined(E500V2)
382 // Intrinsics make gcc generate code for these.
383 double SharedRuntime::dabs(double f) {
384 return (f <= (double)0.0) ? (double)0.0 - f : f;
385 }
386
387 #endif
388
389 #if defined(__SOFTFP__) || defined(PPC)
390 double SharedRuntime::dsqrt(double f) {
391 return sqrt(f);
392 }
393 #endif
394
395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
396 if (g_isnan(x))
397 return 0;
398 if (x >= (jfloat) max_jint)
399 return max_jint;
400 if (x <= (jfloat) min_jint)
401 return min_jint;
402 return (jint) x;
403 JRT_END
404
405
406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
407 if (g_isnan(x))
408 return 0;
409 if (x >= (jfloat) max_jlong)
410 return max_jlong;
411 if (x <= (jfloat) min_jlong)
412 return min_jlong;
413 return (jlong) x;
414 JRT_END
415
416
417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
418 if (g_isnan(x))
419 return 0;
420 if (x >= (jdouble) max_jint)
421 return max_jint;
422 if (x <= (jdouble) min_jint)
423 return min_jint;
424 return (jint) x;
425 JRT_END
426
427
428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
429 if (g_isnan(x))
430 return 0;
431 if (x >= (jdouble) max_jlong)
432 return max_jlong;
433 if (x <= (jdouble) min_jlong)
434 return min_jlong;
435 return (jlong) x;
436 JRT_END
437
438
439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
440 return (jfloat)x;
441 JRT_END
442
443
444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
445 return (jfloat)x;
446 JRT_END
447
448
449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
450 return (jdouble)x;
451 JRT_END
452
453 // Exception handling across interpreter/compiler boundaries
454 //
455 // exception_handler_for_return_address(...) returns the continuation address.
456 // The continuation address is the entry point of the exception handler of the
457 // previous frame depending on the return address.
458
459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
460 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
461 assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
462
463 // Reset method handle flag.
464 thread->set_is_method_handle_return(false);
465
466 #if INCLUDE_JVMCI
467 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
468 // and other exception handler continuations do not read it
469 thread->set_exception_pc(NULL);
470 #endif // INCLUDE_JVMCI
471
472 // The fastest case first
473 CodeBlob* blob = CodeCache::find_blob(return_address);
474 CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
475 if (nm != NULL) {
476 // Set flag if return address is a method handle call site.
477 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
478 // native nmethods don't have exception handlers
479 assert(!nm->is_native_method(), "no exception handler");
480 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
481 if (nm->is_deopt_pc(return_address)) {
482 // If we come here because of a stack overflow, the stack may be
483 // unguarded. Reguard the stack otherwise if we return to the
484 // deopt blob and the stack bang causes a stack overflow we
485 // crash.
486 bool guard_pages_enabled = thread->stack_guards_enabled();
487 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
488 if (thread->reserved_stack_activation() != thread->stack_base()) {
489 thread->set_reserved_stack_activation(thread->stack_base());
490 }
491 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
492 return SharedRuntime::deopt_blob()->unpack_with_exception();
493 } else {
494 return nm->exception_begin();
495 }
496 }
497
498 // Entry code
499 if (StubRoutines::returns_to_call_stub(return_address)) {
500 return StubRoutines::catch_exception_entry();
501 }
502 // Interpreted code
503 if (Interpreter::contains(return_address)) {
504 return Interpreter::rethrow_exception_entry();
505 }
506
507 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
508 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
509
510 #ifndef PRODUCT
511 { ResourceMark rm;
512 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
513 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
514 tty->print_cr("b) other problem");
515 }
516 #endif // PRODUCT
517
518 ShouldNotReachHere();
519 return NULL;
520 }
521
522
523 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
524 return raw_exception_handler_for_return_address(thread, return_address);
525 JRT_END
526
527
528 address SharedRuntime::get_poll_stub(address pc) {
529 address stub;
530 // Look up the code blob
531 CodeBlob *cb = CodeCache::find_blob(pc);
532
533 // Should be an nmethod
534 guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
535
536 // Look up the relocation information
537 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
538 "safepoint polling: type must be poll");
539
540 #ifdef ASSERT
541 if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
542 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
543 Disassembler::decode(cb);
544 fatal("Only polling locations are used for safepoint");
545 }
546 #endif
547
548 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
549 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
550 if (at_poll_return) {
551 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
552 "polling page return stub not created yet");
553 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
554 } else if (has_wide_vectors) {
555 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
556 "polling page vectors safepoint stub not created yet");
557 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
558 } else {
559 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
560 "polling page safepoint stub not created yet");
561 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
562 }
563 log_debug(safepoint)("... found polling page %s exception at pc = "
564 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
565 at_poll_return ? "return" : "loop",
566 (intptr_t)pc, (intptr_t)stub);
567 return stub;
568 }
569
570
571 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
572 assert(caller.is_interpreted_frame(), "");
573 int args_size = ArgumentSizeComputer(sig).size() + 1;
574 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
575 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
576 assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
577 return result;
578 }
579
580
581 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
582 if (JvmtiExport::can_post_on_exceptions()) {
583 vframeStream vfst(thread, true);
584 methodHandle method = methodHandle(thread, vfst.method());
585 address bcp = method()->bcp_from(vfst.bci());
586 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
587 }
588 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
589 }
590
591 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
592 Handle h_exception = Exceptions::new_exception(thread, name, message);
593 throw_and_post_jvmti_exception(thread, h_exception);
594 }
595
596 // The interpreter code to call this tracing function is only
597 // called/generated when UL is on for redefine, class and has the right level
598 // and tags. Since obsolete methods are never compiled, we don't have
599 // to modify the compilers to generate calls to this function.
600 //
601 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
602 JavaThread* thread, Method* method))
603 if (method->is_obsolete()) {
604 // We are calling an obsolete method, but this is not necessarily
605 // an error. Our method could have been redefined just after we
606 // fetched the Method* from the constant pool.
607 ResourceMark rm;
608 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
609 }
610 return 0;
611 JRT_END
612
613 // ret_pc points into caller; we are returning caller's exception handler
614 // for given exception
615 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
616 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
617 assert(cm != NULL, "must exist");
618 ResourceMark rm;
619
620 #if INCLUDE_JVMCI
621 if (cm->is_compiled_by_jvmci()) {
622 // lookup exception handler for this pc
623 int catch_pco = ret_pc - cm->code_begin();
624 ExceptionHandlerTable table(cm);
625 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
626 if (t != NULL) {
627 return cm->code_begin() + t->pco();
628 } else {
629 return Deoptimization::deoptimize_for_missing_exception_handler(cm);
630 }
631 }
632 #endif // INCLUDE_JVMCI
633
634 nmethod* nm = cm->as_nmethod();
635 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
636 // determine handler bci, if any
637 EXCEPTION_MARK;
638
639 int handler_bci = -1;
640 int scope_depth = 0;
641 if (!force_unwind) {
642 int bci = sd->bci();
643 bool recursive_exception = false;
644 do {
645 bool skip_scope_increment = false;
646 // exception handler lookup
647 Klass* ek = exception->klass();
648 methodHandle mh(THREAD, sd->method());
649 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
650 if (HAS_PENDING_EXCEPTION) {
651 recursive_exception = true;
652 // We threw an exception while trying to find the exception handler.
653 // Transfer the new exception to the exception handle which will
654 // be set into thread local storage, and do another lookup for an
655 // exception handler for this exception, this time starting at the
656 // BCI of the exception handler which caused the exception to be
657 // thrown (bugs 4307310 and 4546590). Set "exception" reference
658 // argument to ensure that the correct exception is thrown (4870175).
659 recursive_exception_occurred = true;
660 exception = Handle(THREAD, PENDING_EXCEPTION);
661 CLEAR_PENDING_EXCEPTION;
662 if (handler_bci >= 0) {
663 bci = handler_bci;
664 handler_bci = -1;
665 skip_scope_increment = true;
666 }
667 }
668 else {
669 recursive_exception = false;
670 }
671 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
672 sd = sd->sender();
673 if (sd != NULL) {
674 bci = sd->bci();
675 }
676 ++scope_depth;
677 }
678 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
679 }
680
681 // found handling method => lookup exception handler
682 int catch_pco = ret_pc - nm->code_begin();
683
684 ExceptionHandlerTable table(nm);
685 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
686 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
687 // Allow abbreviated catch tables. The idea is to allow a method
688 // to materialize its exceptions without committing to the exact
689 // routing of exceptions. In particular this is needed for adding
690 // a synthetic handler to unlock monitors when inlining
691 // synchronized methods since the unlock path isn't represented in
692 // the bytecodes.
693 t = table.entry_for(catch_pco, -1, 0);
694 }
695
696 #ifdef COMPILER1
697 if (t == NULL && nm->is_compiled_by_c1()) {
698 assert(nm->unwind_handler_begin() != NULL, "");
699 return nm->unwind_handler_begin();
700 }
701 #endif
702
703 if (t == NULL) {
704 ttyLocker ttyl;
705 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
706 tty->print_cr(" Exception:");
707 exception->print();
708 tty->cr();
709 tty->print_cr(" Compiled exception table :");
710 table.print();
711 nm->print_code();
712 guarantee(false, "missing exception handler");
713 return NULL;
714 }
715
716 return nm->code_begin() + t->pco();
717 }
718
719 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
720 // These errors occur only at call sites
721 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
722 JRT_END
723
724 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
725 // These errors occur only at call sites
726 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
727 JRT_END
728
729 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
730 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
731 JRT_END
732
733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
734 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
735 JRT_END
736
737 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
738 // This entry point is effectively only used for NullPointerExceptions which occur at inline
739 // cache sites (when the callee activation is not yet set up) so we are at a call site
740 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
741 JRT_END
742
743 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
744 throw_StackOverflowError_common(thread, false);
745 JRT_END
746
747 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
748 throw_StackOverflowError_common(thread, true);
749 JRT_END
750
751 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
752 // We avoid using the normal exception construction in this case because
753 // it performs an upcall to Java, and we're already out of stack space.
754 Thread* THREAD = thread;
755 Klass* k = SystemDictionary::StackOverflowError_klass();
756 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
757 if (delayed) {
758 java_lang_Throwable::set_message(exception_oop,
759 Universe::delayed_stack_overflow_error_message());
760 }
761 Handle exception (thread, exception_oop);
762 if (StackTraceInThrowable) {
763 java_lang_Throwable::fill_in_stack_trace(exception);
764 }
765 // Increment counter for hs_err file reporting
766 Atomic::inc(&Exceptions::_stack_overflow_errors);
767 throw_and_post_jvmti_exception(thread, exception);
768 }
769
770 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
771 address pc,
772 ImplicitExceptionKind exception_kind)
773 {
774 address target_pc = NULL;
775
776 if (Interpreter::contains(pc)) {
777 #ifdef CC_INTERP
778 // C++ interpreter doesn't throw implicit exceptions
779 ShouldNotReachHere();
780 #else
781 switch (exception_kind) {
782 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
783 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
784 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
785 default: ShouldNotReachHere();
786 }
787 #endif // !CC_INTERP
788 } else {
789 switch (exception_kind) {
790 case STACK_OVERFLOW: {
791 // Stack overflow only occurs upon frame setup; the callee is
792 // going to be unwound. Dispatch to a shared runtime stub
793 // which will cause the StackOverflowError to be fabricated
794 // and processed.
795 // Stack overflow should never occur during deoptimization:
796 // the compiled method bangs the stack by as much as the
797 // interpreter would need in case of a deoptimization. The
798 // deoptimization blob and uncommon trap blob bang the stack
799 // in a debug VM to verify the correctness of the compiled
800 // method stack banging.
801 assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
802 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
803 return StubRoutines::throw_StackOverflowError_entry();
804 }
805
806 case IMPLICIT_NULL: {
807 if (VtableStubs::contains(pc)) {
808 // We haven't yet entered the callee frame. Fabricate an
809 // exception and begin dispatching it in the caller. Since
810 // the caller was at a call site, it's safe to destroy all
811 // caller-saved registers, as these entry points do.
812 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
813
814 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
815 if (vt_stub == NULL) return NULL;
816
817 if (vt_stub->is_abstract_method_error(pc)) {
818 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
819 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
820 // Instead of throwing the abstract method error here directly, we re-resolve
821 // and will throw the AbstractMethodError during resolve. As a result, we'll
822 // get a more detailed error message.
823 return SharedRuntime::get_handle_wrong_method_stub();
824 } else {
825 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
826 // Assert that the signal comes from the expected location in stub code.
827 assert(vt_stub->is_null_pointer_exception(pc),
828 "obtained signal from unexpected location in stub code");
829 return StubRoutines::throw_NullPointerException_at_call_entry();
830 }
831 } else {
832 CodeBlob* cb = CodeCache::find_blob(pc);
833
834 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
835 if (cb == NULL) return NULL;
836
837 // Exception happened in CodeCache. Must be either:
838 // 1. Inline-cache check in C2I handler blob,
839 // 2. Inline-cache check in nmethod, or
840 // 3. Implicit null exception in nmethod
841
842 if (!cb->is_compiled()) {
843 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
844 if (!is_in_blob) {
845 // Allow normal crash reporting to handle this
846 return NULL;
847 }
848 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
849 // There is no handler here, so we will simply unwind.
850 return StubRoutines::throw_NullPointerException_at_call_entry();
851 }
852
853 // Otherwise, it's a compiled method. Consult its exception handlers.
854 CompiledMethod* cm = (CompiledMethod*)cb;
855 if (cm->inlinecache_check_contains(pc)) {
856 // exception happened inside inline-cache check code
857 // => the nmethod is not yet active (i.e., the frame
858 // is not set up yet) => use return address pushed by
859 // caller => don't push another return address
860 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
861 return StubRoutines::throw_NullPointerException_at_call_entry();
862 }
863
864 if (cm->method()->is_method_handle_intrinsic()) {
865 // exception happened inside MH dispatch code, similar to a vtable stub
866 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
867 return StubRoutines::throw_NullPointerException_at_call_entry();
868 }
869
870 #ifndef PRODUCT
871 _implicit_null_throws++;
872 #endif
873 target_pc = cm->continuation_for_implicit_null_exception(pc);
874 // If there's an unexpected fault, target_pc might be NULL,
875 // in which case we want to fall through into the normal
876 // error handling code.
877 }
878
879 break; // fall through
880 }
881
882
883 case IMPLICIT_DIVIDE_BY_ZERO: {
884 CompiledMethod* cm = CodeCache::find_compiled(pc);
885 guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
886 #ifndef PRODUCT
887 _implicit_div0_throws++;
888 #endif
889 target_pc = cm->continuation_for_implicit_div0_exception(pc);
890 // If there's an unexpected fault, target_pc might be NULL,
891 // in which case we want to fall through into the normal
892 // error handling code.
893 break; // fall through
894 }
895
896 default: ShouldNotReachHere();
897 }
898
899 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
900
901 if (exception_kind == IMPLICIT_NULL) {
902 #ifndef PRODUCT
903 // for AbortVMOnException flag
904 Exceptions::debug_check_abort("java.lang.NullPointerException");
905 #endif //PRODUCT
906 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
907 } else {
908 #ifndef PRODUCT
909 // for AbortVMOnException flag
910 Exceptions::debug_check_abort("java.lang.ArithmeticException");
911 #endif //PRODUCT
912 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
913 }
914 return target_pc;
915 }
916
917 ShouldNotReachHere();
918 return NULL;
919 }
920
921
922 /**
923 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
924 * installed in the native function entry of all native Java methods before
925 * they get linked to their actual native methods.
926 *
927 * \note
928 * This method actually never gets called! The reason is because
929 * the interpreter's native entries call NativeLookup::lookup() which
930 * throws the exception when the lookup fails. The exception is then
931 * caught and forwarded on the return from NativeLookup::lookup() call
932 * before the call to the native function. This might change in the future.
933 */
934 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
935 {
936 // We return a bad value here to make sure that the exception is
937 // forwarded before we look at the return value.
938 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
939 }
940 JNI_END
941
942 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
943 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
944 }
945
946 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
947 #if INCLUDE_JVMCI
948 if (!obj->klass()->has_finalizer()) {
949 return;
950 }
951 #endif // INCLUDE_JVMCI
952 assert(oopDesc::is_oop(obj), "must be a valid oop");
953 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
954 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
955 JRT_END
956
957
958 jlong SharedRuntime::get_java_tid(Thread* thread) {
959 if (thread != NULL) {
960 if (thread->is_Java_thread()) {
961 oop obj = ((JavaThread*)thread)->threadObj();
962 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
963 }
964 }
965 return 0;
966 }
967
968 /**
969 * This function ought to be a void function, but cannot be because
970 * it gets turned into a tail-call on sparc, which runs into dtrace bug
971 * 6254741. Once that is fixed we can remove the dummy return value.
972 */
973 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
974 return dtrace_object_alloc_base(Thread::current(), o, size);
975 }
976
977 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
978 assert(DTraceAllocProbes, "wrong call");
979 Klass* klass = o->klass();
980 Symbol* name = klass->name();
981 HOTSPOT_OBJECT_ALLOC(
982 get_java_tid(thread),
983 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
984 return 0;
985 }
986
987 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
988 JavaThread* thread, Method* method))
989 assert(DTraceMethodProbes, "wrong call");
990 Symbol* kname = method->klass_name();
991 Symbol* name = method->name();
992 Symbol* sig = method->signature();
993 HOTSPOT_METHOD_ENTRY(
994 get_java_tid(thread),
995 (char *) kname->bytes(), kname->utf8_length(),
996 (char *) name->bytes(), name->utf8_length(),
997 (char *) sig->bytes(), sig->utf8_length());
998 return 0;
999 JRT_END
1000
1001 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1002 JavaThread* thread, Method* method))
1003 assert(DTraceMethodProbes, "wrong call");
1004 Symbol* kname = method->klass_name();
1005 Symbol* name = method->name();
1006 Symbol* sig = method->signature();
1007 HOTSPOT_METHOD_RETURN(
1008 get_java_tid(thread),
1009 (char *) kname->bytes(), kname->utf8_length(),
1010 (char *) name->bytes(), name->utf8_length(),
1011 (char *) sig->bytes(), sig->utf8_length());
1012 return 0;
1013 JRT_END
1014
1015 #if INCLUDE_TSAN
1016
1017 JRT_LEAF(void, SharedRuntime::verify_oop_index(oopDesc* obj, int index))
1018 assert(oopDesc::is_oop(obj), "invalid oop");
1019 assert(index >= 0, "index is less than 0");
1020 int obj_size_in_bytes = obj->size() * HeapWordSize;
1021 assert(index < obj_size_in_bytes, "index %d >= obj size %d", index, obj_size_in_bytes);
1022 JRT_END
1023
1024 // TSAN: method entry callback from interpreter
1025 // (1) In order to have the line numbers in the call stack, we use the caller
1026 // address instead of the method that's being called. This also matches
1027 // the entry/exit convention that TSAN uses for C++.
1028 // We use JRT_ENTRY since call_VM_leaf doesn't set _last_Java_sp that we need.
1029 JRT_ENTRY(void, SharedRuntime::tsan_interp_method_entry(JavaThread *thread))
1030 DEBUG_ONLY(NoSafepointVerifier nsv;)
1031 DEBUG_ONLY(NoHandleMark nhm;)
1032 assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1033
1034 RegisterMap unused_reg_map(thread, false);
1035
1036 // These asserts should be removed once
1037 // we support more than just the interpreter for TSAN.
1038 assert(!thread->last_frame().is_compiled_frame(),
1039 "Current frame should not be a compiled frame");
1040 const frame sender = thread->last_frame().real_sender(&unused_reg_map);
1041 assert(!sender.is_compiled_frame(), "Sender should not be a compiled frame");
1042
1043 jmethodID jmethod_id = 0;
1044 u2 bci = 0;
1045 // TODO: is (0, 0) really the best we can do
1046 // when the sender isn't an interpreted frame?
1047 if (sender.is_interpreted_frame()) {
1048 jmethod_id = sender.interpreter_frame_method()->find_jmethod_id_or_null();
1049 bci = sender.interpreter_frame_bci();
1050 }
1051 __tsan_func_entry(tsan_code_location(jmethod_id, bci));
1052 JRT_END
1053
1054 // TSAN: method exit callback from interpreter
1055 JRT_LEAF(void, SharedRuntime::tsan_interp_method_exit())
1056 assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1057 __tsan_func_exit();
1058 JRT_END
1059
1060 void SharedRuntime::tsan_oop_lock(Thread* thread, oop obj) {
1061 DEBUG_ONLY(NoSafepointVerifier nsv;)
1062 assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1063 assert(thread != NULL, "null thread");
1064 assert(obj != NULL, "null oop");
1065 assert(oopDesc::is_oop(obj), "invalid oop");
1066
1067 TsanOopMap::add_oop(obj);
1068 __tsan_java_mutex_lock((julong)(oopDesc*)obj);
1069 }
1070
1071 void SharedRuntime::tsan_oop_unlock(Thread *thread, oop obj) {
1072 DEBUG_ONLY(NoSafepointVerifier nsv;)
1073 assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1074 assert(thread != NULL, "null thread");
1075 assert(obj != NULL, "null oop");
1076 assert(oopDesc::is_oop(obj), "invalid oop");
1077 assert(TsanOopMap::exists(obj), "oop seen in unlock but not tracked");
1078
1079 __tsan_java_mutex_unlock((julong)(oopDesc*)obj);
1080 }
1081
1082 void SharedRuntime::tsan_oop_rec_lock(Thread* thread, oop obj, int rec) {
1083 DEBUG_ONLY(NoSafepointVerifier nsv;)
1084 assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1085 assert(thread != NULL, "null thread");
1086 assert(obj != NULL, "null oop");
1087 assert(oopDesc::is_oop(obj), "invalid oop");
1088
1089 TsanOopMap::add_oop(obj);
1090 __tsan_java_mutex_lock_rec((julong)(oopDesc*)obj, rec);
1091 }
1092
1093 int SharedRuntime::tsan_oop_rec_unlock(Thread *thread, oop obj) {
1094 DEBUG_ONLY(NoSafepointVerifier nsv;)
1095 assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1096 assert(thread != NULL, "null thread");
1097 assert(obj != NULL, "null oop");
1098 assert(oopDesc::is_oop(obj), "invalid oop");
1099 assert(TsanOopMap::exists(obj), "oop seen in unlock but not tracked");
1100
1101 return __tsan_java_mutex_unlock_rec((julong)(oopDesc*)obj);
1102 }
1103
1104 JRT_LEAF(void, SharedRuntime::tsan_interp_lock(JavaThread* thread,
1105 BasicObjectLock* elem))
1106 DEBUG_ONLY(thread->last_frame().interpreter_frame_verify_monitor(elem);)
1107 assert(elem != NULL, "null elem");
1108
1109 oop obj = elem->obj();
1110 tsan_oop_lock(thread, obj);
1111
1112 assert(obj == elem->obj(), "oop changed");
1113 DEBUG_ONLY(thread->last_frame().interpreter_frame_verify_monitor(elem);)
1114 JRT_END
1115
1116 JRT_LEAF(void, SharedRuntime::tsan_interp_unlock(JavaThread* thread,
1117 BasicObjectLock* elem))
1118 DEBUG_ONLY(thread->last_frame().interpreter_frame_verify_monitor(elem);)
1119 assert(elem != NULL, "null elem");
1120
1121 oop obj = elem->obj();
1122 tsan_oop_unlock(thread, obj);
1123
1124 assert(obj == elem->obj(), "oop changed");
1125 DEBUG_ONLY(thread->last_frame().interpreter_frame_verify_monitor(elem);)
1126 JRT_END
1127
1128 // Should be JRT_LEAF, but this is called very early during VM startup, so we
1129 // are sometimes in '_thread_in_vm' state.
1130 // NOTE: DO NOT add operations that can safepoint, enter GC, or throw an
1131 // exception!
1132 void SharedRuntime::tsan_track_obj_with_size(oopDesc* obj, int size) {
1133 assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1134 assert(oopDesc::is_oop(obj), "Bad oopDesc passed to tsan_track_obj_with_size().");
1135 TsanOopMap::add_oop_with_size(obj, size);
1136 }
1137
1138 JRT_LEAF(void, SharedRuntime::tsan_track_obj(oopDesc* obj))
1139 assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1140 assert(oopDesc::is_oop(obj), "Bad oopDesc passed to tsan_track_obj().");
1141 TsanOopMap::add_oop(obj);
1142 JRT_END
1143
1144 // TODO: Make tsan_acquire/release JRT_LEAF
1145 // Currently it can't be JRT_LEAF because there are calls from the VM
1146 // (instanceKlass.cpp), and JRT_LEAF only allows calls from Java/native code.
1147 // We need to figure out a better way of being able to call TSAN functions from
1148 // the VM.
1149 void SharedRuntime::tsan_acquire(void* address) {
1150 DEBUG_ONLY(NoSafepointVerifier nsv;)
1151 assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1152 assert(address != NULL, "Cannot acquire at address 0");
1153 __tsan_java_acquire(address);
1154 }
1155
1156 void SharedRuntime::tsan_release(void* address) {
1157 DEBUG_ONLY(NoSafepointVerifier nsv;)
1158 assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1159 assert(address != NULL, "Cannot release at address 0");
1160 __tsan_java_release(address);
1161 }
1162
1163 #define TSAN_MEMORY_ACCESS(name) \
1164 JRT_LEAF(void, SharedRuntime::tsan_##name( \
1165 void* addr, \
1166 Method* method, \
1167 address bcp)) \
1168 assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer"); \
1169 assert(ThreadSanitizerJavaMemory, "Need -XX:+ThreadSanitizerJavaMemory"); \
1170 jmethodID mid = method->find_jmethod_id_or_null(); \
1171 int bci = method->bci_from(bcp); \
1172 __tsan_##name##_pc(addr, tsan_code_location(mid, bci)); \
1173 JRT_END
1174
1175 TSAN_MEMORY_ACCESS(read1)
1176 TSAN_MEMORY_ACCESS(read2)
1177 TSAN_MEMORY_ACCESS(read4)
1178 TSAN_MEMORY_ACCESS(read8)
1179 TSAN_MEMORY_ACCESS(write1)
1180 TSAN_MEMORY_ACCESS(write2)
1181 TSAN_MEMORY_ACCESS(write4)
1182 TSAN_MEMORY_ACCESS(write8)
1183
1184 #endif // INCLUDE_TSAN
1185
1186 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1187 // for a call current in progress, i.e., arguments has been pushed on stack
1188 // put callee has not been invoked yet. Used by: resolve virtual/static,
1189 // vtable updates, etc. Caller frame must be compiled.
1190 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1191 ResourceMark rm(THREAD);
1192
1193 // last java frame on stack (which includes native call frames)
1194 vframeStream vfst(thread, true); // Do not skip and javaCalls
1195
1196 return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1197 }
1198
1199 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1200 CompiledMethod* caller = vfst.nm();
1201
1202 nmethodLocker caller_lock(caller);
1203
1204 address pc = vfst.frame_pc();
1205 { // Get call instruction under lock because another thread may be busy patching it.
1206 CompiledICLocker ic_locker(caller);
1207 return caller->attached_method_before_pc(pc);
1208 }
1209 return NULL;
1210 }
1211
1212 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1213 // for a call current in progress, i.e., arguments has been pushed on stack
1214 // but callee has not been invoked yet. Caller frame must be compiled.
1215 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1216 vframeStream& vfst,
1217 Bytecodes::Code& bc,
1218 CallInfo& callinfo, TRAPS) {
1219 Handle receiver;
1220 Handle nullHandle; //create a handy null handle for exception returns
1221
1222 assert(!vfst.at_end(), "Java frame must exist");
1223
1224 // Find caller and bci from vframe
1225 methodHandle caller(THREAD, vfst.method());
1226 int bci = vfst.bci();
1227
1228 Bytecode_invoke bytecode(caller, bci);
1229 int bytecode_index = bytecode.index();
1230 bc = bytecode.invoke_code();
1231
1232 methodHandle attached_method(THREAD, extract_attached_method(vfst));
1233 if (attached_method.not_null()) {
1234 Method* callee = bytecode.static_target(CHECK_NH);
1235 vmIntrinsics::ID id = callee->intrinsic_id();
1236 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1237 // it attaches statically resolved method to the call site.
1238 if (MethodHandles::is_signature_polymorphic(id) &&
1239 MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1240 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1241
1242 // Adjust invocation mode according to the attached method.
1243 switch (bc) {
1244 case Bytecodes::_invokevirtual:
1245 if (attached_method->method_holder()->is_interface()) {
1246 bc = Bytecodes::_invokeinterface;
1247 }
1248 break;
1249 case Bytecodes::_invokeinterface:
1250 if (!attached_method->method_holder()->is_interface()) {
1251 bc = Bytecodes::_invokevirtual;
1252 }
1253 break;
1254 case Bytecodes::_invokehandle:
1255 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1256 bc = attached_method->is_static() ? Bytecodes::_invokestatic
1257 : Bytecodes::_invokevirtual;
1258 }
1259 break;
1260 default:
1261 break;
1262 }
1263 }
1264 }
1265
1266 assert(bc != Bytecodes::_illegal, "not initialized");
1267
1268 bool has_receiver = bc != Bytecodes::_invokestatic &&
1269 bc != Bytecodes::_invokedynamic &&
1270 bc != Bytecodes::_invokehandle;
1271
1272 // Find receiver for non-static call
1273 if (has_receiver) {
1274 // This register map must be update since we need to find the receiver for
1275 // compiled frames. The receiver might be in a register.
1276 RegisterMap reg_map2(thread);
1277 frame stubFrame = thread->last_frame();
1278 // Caller-frame is a compiled frame
1279 frame callerFrame = stubFrame.sender(®_map2);
1280
1281 if (attached_method.is_null()) {
1282 Method* callee = bytecode.static_target(CHECK_NH);
1283 if (callee == NULL) {
1284 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1285 }
1286 }
1287
1288 // Retrieve from a compiled argument list
1289 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2));
1290
1291 if (receiver.is_null()) {
1292 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1293 }
1294 }
1295
1296 // Resolve method
1297 if (attached_method.not_null()) {
1298 // Parameterized by attached method.
1299 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1300 } else {
1301 // Parameterized by bytecode.
1302 constantPoolHandle constants(THREAD, caller->constants());
1303 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1304 }
1305
1306 #ifdef ASSERT
1307 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1308 if (has_receiver) {
1309 assert(receiver.not_null(), "should have thrown exception");
1310 Klass* receiver_klass = receiver->klass();
1311 Klass* rk = NULL;
1312 if (attached_method.not_null()) {
1313 // In case there's resolved method attached, use its holder during the check.
1314 rk = attached_method->method_holder();
1315 } else {
1316 // Klass is already loaded.
1317 constantPoolHandle constants(THREAD, caller->constants());
1318 rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1319 }
1320 Klass* static_receiver_klass = rk;
1321 assert(receiver_klass->is_subtype_of(static_receiver_klass),
1322 "actual receiver must be subclass of static receiver klass");
1323 if (receiver_klass->is_instance_klass()) {
1324 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1325 tty->print_cr("ERROR: Klass not yet initialized!!");
1326 receiver_klass->print();
1327 }
1328 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1329 }
1330 }
1331 #endif
1332
1333 return receiver;
1334 }
1335
1336 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1337 ResourceMark rm(THREAD);
1338 // We need first to check if any Java activations (compiled, interpreted)
1339 // exist on the stack since last JavaCall. If not, we need
1340 // to get the target method from the JavaCall wrapper.
1341 vframeStream vfst(thread, true); // Do not skip any javaCalls
1342 methodHandle callee_method;
1343 if (vfst.at_end()) {
1344 // No Java frames were found on stack since we did the JavaCall.
1345 // Hence the stack can only contain an entry_frame. We need to
1346 // find the target method from the stub frame.
1347 RegisterMap reg_map(thread, false);
1348 frame fr = thread->last_frame();
1349 assert(fr.is_runtime_frame(), "must be a runtimeStub");
1350 fr = fr.sender(®_map);
1351 assert(fr.is_entry_frame(), "must be");
1352 // fr is now pointing to the entry frame.
1353 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1354 } else {
1355 Bytecodes::Code bc;
1356 CallInfo callinfo;
1357 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1358 callee_method = methodHandle(THREAD, callinfo.selected_method());
1359 }
1360 assert(callee_method()->is_method(), "must be");
1361 return callee_method;
1362 }
1363
1364 // Resolves a call.
1365 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1366 bool is_virtual,
1367 bool is_optimized, TRAPS) {
1368 methodHandle callee_method;
1369 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1370 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1371 int retry_count = 0;
1372 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1373 callee_method->method_holder() != SystemDictionary::Object_klass()) {
1374 // If has a pending exception then there is no need to re-try to
1375 // resolve this method.
1376 // If the method has been redefined, we need to try again.
1377 // Hack: we have no way to update the vtables of arrays, so don't
1378 // require that java.lang.Object has been updated.
1379
1380 // It is very unlikely that method is redefined more than 100 times
1381 // in the middle of resolve. If it is looping here more than 100 times
1382 // means then there could be a bug here.
1383 guarantee((retry_count++ < 100),
1384 "Could not resolve to latest version of redefined method");
1385 // method is redefined in the middle of resolve so re-try.
1386 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1387 }
1388 }
1389 return callee_method;
1390 }
1391
1392 // This fails if resolution required refilling of IC stubs
1393 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1394 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1395 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1396 StaticCallInfo static_call_info;
1397 CompiledICInfo virtual_call_info;
1398
1399 // Make sure the callee nmethod does not get deoptimized and removed before
1400 // we are done patching the code.
1401 CompiledMethod* callee = callee_method->code();
1402
1403 if (callee != NULL) {
1404 assert(callee->is_compiled(), "must be nmethod for patching");
1405 }
1406
1407 if (callee != NULL && !callee->is_in_use()) {
1408 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1409 callee = NULL;
1410 }
1411 nmethodLocker nl_callee(callee);
1412 #ifdef ASSERT
1413 address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1414 #endif
1415
1416 bool is_nmethod = caller_nm->is_nmethod();
1417
1418 if (is_virtual) {
1419 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1420 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1421 Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1422 CompiledIC::compute_monomorphic_entry(callee_method, klass,
1423 is_optimized, static_bound, is_nmethod, virtual_call_info,
1424 CHECK_false);
1425 } else {
1426 // static call
1427 CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1428 }
1429
1430 // grab lock, check for deoptimization and potentially patch caller
1431 {
1432 CompiledICLocker ml(caller_nm);
1433
1434 // Lock blocks for safepoint during which both nmethods can change state.
1435
1436 // Now that we are ready to patch if the Method* was redefined then
1437 // don't update call site and let the caller retry.
1438 // Don't update call site if callee nmethod was unloaded or deoptimized.
1439 // Don't update call site if callee nmethod was replaced by an other nmethod
1440 // which may happen when multiply alive nmethod (tiered compilation)
1441 // will be supported.
1442 if (!callee_method->is_old() &&
1443 (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1444 NoSafepointVerifier nsv;
1445 #ifdef ASSERT
1446 // We must not try to patch to jump to an already unloaded method.
1447 if (dest_entry_point != 0) {
1448 CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1449 assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1450 "should not call unloaded nmethod");
1451 }
1452 #endif
1453 if (is_virtual) {
1454 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1455 if (inline_cache->is_clean()) {
1456 if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1457 return false;
1458 }
1459 }
1460 } else {
1461 if (VM_Version::supports_fast_class_init_checks() &&
1462 invoke_code == Bytecodes::_invokestatic &&
1463 callee_method->needs_clinit_barrier() &&
1464 callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1465 return true; // skip patching for JVMCI or AOT code
1466 }
1467 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1468 if (ssc->is_clean()) ssc->set(static_call_info);
1469 }
1470 }
1471 } // unlock CompiledICLocker
1472 return true;
1473 }
1474
1475 // Resolves a call. The compilers generate code for calls that go here
1476 // and are patched with the real destination of the call.
1477 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1478 bool is_virtual,
1479 bool is_optimized, TRAPS) {
1480
1481 ResourceMark rm(thread);
1482 RegisterMap cbl_map(thread, false);
1483 frame caller_frame = thread->last_frame().sender(&cbl_map);
1484
1485 CodeBlob* caller_cb = caller_frame.cb();
1486 guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1487 CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1488
1489 // make sure caller is not getting deoptimized
1490 // and removed before we are done with it.
1491 // CLEANUP - with lazy deopt shouldn't need this lock
1492 nmethodLocker caller_lock(caller_nm);
1493
1494 // determine call info & receiver
1495 // note: a) receiver is NULL for static calls
1496 // b) an exception is thrown if receiver is NULL for non-static calls
1497 CallInfo call_info;
1498 Bytecodes::Code invoke_code = Bytecodes::_illegal;
1499 Handle receiver = find_callee_info(thread, invoke_code,
1500 call_info, CHECK_(methodHandle()));
1501 methodHandle callee_method(THREAD, call_info.selected_method());
1502
1503 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1504 (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1505 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1506 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1507 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1508
1509 assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1510
1511 #ifndef PRODUCT
1512 // tracing/debugging/statistics
1513 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1514 (is_virtual) ? (&_resolve_virtual_ctr) :
1515 (&_resolve_static_ctr);
1516 Atomic::inc(addr);
1517
1518 if (TraceCallFixup) {
1519 ResourceMark rm(thread);
1520 tty->print("resolving %s%s (%s) call to",
1521 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1522 Bytecodes::name(invoke_code));
1523 callee_method->print_short_name(tty);
1524 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1525 p2i(caller_frame.pc()), p2i(callee_method->code()));
1526 }
1527 #endif
1528
1529 if (invoke_code == Bytecodes::_invokestatic) {
1530 assert(callee_method->method_holder()->is_initialized() ||
1531 callee_method->method_holder()->is_reentrant_initialization(thread),
1532 "invalid class initialization state for invoke_static");
1533 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1534 // In order to keep class initialization check, do not patch call
1535 // site for static call when the class is not fully initialized.
1536 // Proper check is enforced by call site re-resolution on every invocation.
1537 //
1538 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1539 // explicit class initialization check is put in nmethod entry (VEP).
1540 assert(callee_method->method_holder()->is_linked(), "must be");
1541 return callee_method;
1542 }
1543 }
1544
1545 // JSR 292 key invariant:
1546 // If the resolved method is a MethodHandle invoke target, the call
1547 // site must be a MethodHandle call site, because the lambda form might tail-call
1548 // leaving the stack in a state unknown to either caller or callee
1549 // TODO detune for now but we might need it again
1550 // assert(!callee_method->is_compiled_lambda_form() ||
1551 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1552
1553 // Compute entry points. This might require generation of C2I converter
1554 // frames, so we cannot be holding any locks here. Furthermore, the
1555 // computation of the entry points is independent of patching the call. We
1556 // always return the entry-point, but we only patch the stub if the call has
1557 // not been deoptimized. Return values: For a virtual call this is an
1558 // (cached_oop, destination address) pair. For a static call/optimized
1559 // virtual this is just a destination address.
1560
1561 // Patching IC caches may fail if we run out if transition stubs.
1562 // We refill the ic stubs then and try again.
1563 for (;;) {
1564 ICRefillVerifier ic_refill_verifier;
1565 bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1566 is_virtual, is_optimized, receiver,
1567 call_info, invoke_code, CHECK_(methodHandle()));
1568 if (successful) {
1569 return callee_method;
1570 } else {
1571 InlineCacheBuffer::refill_ic_stubs();
1572 }
1573 }
1574
1575 }
1576
1577
1578 // Inline caches exist only in compiled code
1579 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1580 #ifdef ASSERT
1581 RegisterMap reg_map(thread, false);
1582 frame stub_frame = thread->last_frame();
1583 assert(stub_frame.is_runtime_frame(), "sanity check");
1584 frame caller_frame = stub_frame.sender(®_map);
1585 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1586 #endif /* ASSERT */
1587
1588 methodHandle callee_method;
1589 JRT_BLOCK
1590 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1591 // Return Method* through TLS
1592 thread->set_vm_result_2(callee_method());
1593 JRT_BLOCK_END
1594 // return compiled code entry point after potential safepoints
1595 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1596 return callee_method->verified_code_entry();
1597 JRT_END
1598
1599
1600 // Handle call site that has been made non-entrant
1601 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1602 // 6243940 We might end up in here if the callee is deoptimized
1603 // as we race to call it. We don't want to take a safepoint if
1604 // the caller was interpreted because the caller frame will look
1605 // interpreted to the stack walkers and arguments are now
1606 // "compiled" so it is much better to make this transition
1607 // invisible to the stack walking code. The i2c path will
1608 // place the callee method in the callee_target. It is stashed
1609 // there because if we try and find the callee by normal means a
1610 // safepoint is possible and have trouble gc'ing the compiled args.
1611 RegisterMap reg_map(thread, false);
1612 frame stub_frame = thread->last_frame();
1613 assert(stub_frame.is_runtime_frame(), "sanity check");
1614 frame caller_frame = stub_frame.sender(®_map);
1615
1616 if (caller_frame.is_interpreted_frame() ||
1617 caller_frame.is_entry_frame()) {
1618 Method* callee = thread->callee_target();
1619 guarantee(callee != NULL && callee->is_method(), "bad handshake");
1620 thread->set_vm_result_2(callee);
1621 thread->set_callee_target(NULL);
1622 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1623 // Bypass class initialization checks in c2i when caller is in native.
1624 // JNI calls to static methods don't have class initialization checks.
1625 // Fast class initialization checks are present in c2i adapters and call into
1626 // SharedRuntime::handle_wrong_method() on the slow path.
1627 //
1628 // JVM upcalls may land here as well, but there's a proper check present in
1629 // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1630 // so bypassing it in c2i adapter is benign.
1631 return callee->get_c2i_no_clinit_check_entry();
1632 } else {
1633 return callee->get_c2i_entry();
1634 }
1635 }
1636
1637 // Must be compiled to compiled path which is safe to stackwalk
1638 methodHandle callee_method;
1639 JRT_BLOCK
1640 // Force resolving of caller (if we called from compiled frame)
1641 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1642 thread->set_vm_result_2(callee_method());
1643 JRT_BLOCK_END
1644 // return compiled code entry point after potential safepoints
1645 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1646 return callee_method->verified_code_entry();
1647 JRT_END
1648
1649 // Handle abstract method call
1650 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1651 // Verbose error message for AbstractMethodError.
1652 // Get the called method from the invoke bytecode.
1653 vframeStream vfst(thread, true);
1654 assert(!vfst.at_end(), "Java frame must exist");
1655 methodHandle caller(thread, vfst.method());
1656 Bytecode_invoke invoke(caller, vfst.bci());
1657 DEBUG_ONLY( invoke.verify(); )
1658
1659 // Find the compiled caller frame.
1660 RegisterMap reg_map(thread);
1661 frame stubFrame = thread->last_frame();
1662 assert(stubFrame.is_runtime_frame(), "must be");
1663 frame callerFrame = stubFrame.sender(®_map);
1664 assert(callerFrame.is_compiled_frame(), "must be");
1665
1666 // Install exception and return forward entry.
1667 address res = StubRoutines::throw_AbstractMethodError_entry();
1668 JRT_BLOCK
1669 methodHandle callee(thread, invoke.static_target(thread));
1670 if (!callee.is_null()) {
1671 oop recv = callerFrame.retrieve_receiver(®_map);
1672 Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1673 LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1674 res = StubRoutines::forward_exception_entry();
1675 }
1676 JRT_BLOCK_END
1677 return res;
1678 JRT_END
1679
1680
1681 // resolve a static call and patch code
1682 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1683 methodHandle callee_method;
1684 JRT_BLOCK
1685 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1686 thread->set_vm_result_2(callee_method());
1687 JRT_BLOCK_END
1688 // return compiled code entry point after potential safepoints
1689 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1690 return callee_method->verified_code_entry();
1691 JRT_END
1692
1693
1694 // resolve virtual call and update inline cache to monomorphic
1695 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1696 methodHandle callee_method;
1697 JRT_BLOCK
1698 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1699 thread->set_vm_result_2(callee_method());
1700 JRT_BLOCK_END
1701 // return compiled code entry point after potential safepoints
1702 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1703 return callee_method->verified_code_entry();
1704 JRT_END
1705
1706
1707 // Resolve a virtual call that can be statically bound (e.g., always
1708 // monomorphic, so it has no inline cache). Patch code to resolved target.
1709 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1710 methodHandle callee_method;
1711 JRT_BLOCK
1712 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1713 thread->set_vm_result_2(callee_method());
1714 JRT_BLOCK_END
1715 // return compiled code entry point after potential safepoints
1716 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1717 return callee_method->verified_code_entry();
1718 JRT_END
1719
1720 // The handle_ic_miss_helper_internal function returns false if it failed due
1721 // to either running out of vtable stubs or ic stubs due to IC transitions
1722 // to transitional states. The needs_ic_stub_refill value will be set if
1723 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1724 // refills the IC stubs and tries again.
1725 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1726 const frame& caller_frame, methodHandle callee_method,
1727 Bytecodes::Code bc, CallInfo& call_info,
1728 bool& needs_ic_stub_refill, TRAPS) {
1729 CompiledICLocker ml(caller_nm);
1730 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1731 bool should_be_mono = false;
1732 if (inline_cache->is_optimized()) {
1733 if (TraceCallFixup) {
1734 ResourceMark rm(THREAD);
1735 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1736 callee_method->print_short_name(tty);
1737 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1738 }
1739 should_be_mono = true;
1740 } else if (inline_cache->is_icholder_call()) {
1741 CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1742 if (ic_oop != NULL) {
1743 if (!ic_oop->is_loader_alive()) {
1744 // Deferred IC cleaning due to concurrent class unloading
1745 if (!inline_cache->set_to_clean()) {
1746 needs_ic_stub_refill = true;
1747 return false;
1748 }
1749 } else if (receiver()->klass() == ic_oop->holder_klass()) {
1750 // This isn't a real miss. We must have seen that compiled code
1751 // is now available and we want the call site converted to a
1752 // monomorphic compiled call site.
1753 // We can't assert for callee_method->code() != NULL because it
1754 // could have been deoptimized in the meantime
1755 if (TraceCallFixup) {
1756 ResourceMark rm(THREAD);
1757 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1758 callee_method->print_short_name(tty);
1759 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1760 }
1761 should_be_mono = true;
1762 }
1763 }
1764 }
1765
1766 if (should_be_mono) {
1767 // We have a path that was monomorphic but was going interpreted
1768 // and now we have (or had) a compiled entry. We correct the IC
1769 // by using a new icBuffer.
1770 CompiledICInfo info;
1771 Klass* receiver_klass = receiver()->klass();
1772 inline_cache->compute_monomorphic_entry(callee_method,
1773 receiver_klass,
1774 inline_cache->is_optimized(),
1775 false, caller_nm->is_nmethod(),
1776 info, CHECK_false);
1777 if (!inline_cache->set_to_monomorphic(info)) {
1778 needs_ic_stub_refill = true;
1779 return false;
1780 }
1781 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1782 // Potential change to megamorphic
1783
1784 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1785 if (needs_ic_stub_refill) {
1786 return false;
1787 }
1788 if (!successful) {
1789 if (!inline_cache->set_to_clean()) {
1790 needs_ic_stub_refill = true;
1791 return false;
1792 }
1793 }
1794 } else {
1795 // Either clean or megamorphic
1796 }
1797 return true;
1798 }
1799
1800 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1801 ResourceMark rm(thread);
1802 CallInfo call_info;
1803 Bytecodes::Code bc;
1804
1805 // receiver is NULL for static calls. An exception is thrown for NULL
1806 // receivers for non-static calls
1807 Handle receiver = find_callee_info(thread, bc, call_info,
1808 CHECK_(methodHandle()));
1809 // Compiler1 can produce virtual call sites that can actually be statically bound
1810 // If we fell thru to below we would think that the site was going megamorphic
1811 // when in fact the site can never miss. Worse because we'd think it was megamorphic
1812 // we'd try and do a vtable dispatch however methods that can be statically bound
1813 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1814 // reresolution of the call site (as if we did a handle_wrong_method and not an
1815 // plain ic_miss) and the site will be converted to an optimized virtual call site
1816 // never to miss again. I don't believe C2 will produce code like this but if it
1817 // did this would still be the correct thing to do for it too, hence no ifdef.
1818 //
1819 if (call_info.resolved_method()->can_be_statically_bound()) {
1820 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1821 if (TraceCallFixup) {
1822 RegisterMap reg_map(thread, false);
1823 frame caller_frame = thread->last_frame().sender(®_map);
1824 ResourceMark rm(thread);
1825 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1826 callee_method->print_short_name(tty);
1827 tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1828 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1829 }
1830 return callee_method;
1831 }
1832
1833 methodHandle callee_method(thread, call_info.selected_method());
1834
1835 #ifndef PRODUCT
1836 Atomic::inc(&_ic_miss_ctr);
1837
1838 // Statistics & Tracing
1839 if (TraceCallFixup) {
1840 ResourceMark rm(thread);
1841 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1842 callee_method->print_short_name(tty);
1843 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1844 }
1845
1846 if (ICMissHistogram) {
1847 MutexLocker m(VMStatistic_lock);
1848 RegisterMap reg_map(thread, false);
1849 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub
1850 // produce statistics under the lock
1851 trace_ic_miss(f.pc());
1852 }
1853 #endif
1854
1855 // install an event collector so that when a vtable stub is created the
1856 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1857 // event can't be posted when the stub is created as locks are held
1858 // - instead the event will be deferred until the event collector goes
1859 // out of scope.
1860 JvmtiDynamicCodeEventCollector event_collector;
1861
1862 // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1863 // Transitioning IC caches may require transition stubs. If we run out
1864 // of transition stubs, we have to drop locks and perform a safepoint
1865 // that refills them.
1866 RegisterMap reg_map(thread, false);
1867 frame caller_frame = thread->last_frame().sender(®_map);
1868 CodeBlob* cb = caller_frame.cb();
1869 CompiledMethod* caller_nm = cb->as_compiled_method();
1870
1871 for (;;) {
1872 ICRefillVerifier ic_refill_verifier;
1873 bool needs_ic_stub_refill = false;
1874 bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1875 bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1876 if (successful || !needs_ic_stub_refill) {
1877 return callee_method;
1878 } else {
1879 InlineCacheBuffer::refill_ic_stubs();
1880 }
1881 }
1882 }
1883
1884 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1885 CompiledICLocker ml(caller_nm);
1886 if (is_static_call) {
1887 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1888 if (!ssc->is_clean()) {
1889 return ssc->set_to_clean();
1890 }
1891 } else {
1892 // compiled, dispatched call (which used to call an interpreted method)
1893 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1894 if (!inline_cache->is_clean()) {
1895 return inline_cache->set_to_clean();
1896 }
1897 }
1898 return true;
1899 }
1900
1901 //
1902 // Resets a call-site in compiled code so it will get resolved again.
1903 // This routines handles both virtual call sites, optimized virtual call
1904 // sites, and static call sites. Typically used to change a call sites
1905 // destination from compiled to interpreted.
1906 //
1907 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1908 ResourceMark rm(thread);
1909 RegisterMap reg_map(thread, false);
1910 frame stub_frame = thread->last_frame();
1911 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1912 frame caller = stub_frame.sender(®_map);
1913
1914 // Do nothing if the frame isn't a live compiled frame.
1915 // nmethod could be deoptimized by the time we get here
1916 // so no update to the caller is needed.
1917
1918 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1919
1920 address pc = caller.pc();
1921
1922 // Check for static or virtual call
1923 bool is_static_call = false;
1924 CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1925
1926 // Default call_addr is the location of the "basic" call.
1927 // Determine the address of the call we a reresolving. With
1928 // Inline Caches we will always find a recognizable call.
1929 // With Inline Caches disabled we may or may not find a
1930 // recognizable call. We will always find a call for static
1931 // calls and for optimized virtual calls. For vanilla virtual
1932 // calls it depends on the state of the UseInlineCaches switch.
1933 //
1934 // With Inline Caches disabled we can get here for a virtual call
1935 // for two reasons:
1936 // 1 - calling an abstract method. The vtable for abstract methods
1937 // will run us thru handle_wrong_method and we will eventually
1938 // end up in the interpreter to throw the ame.
1939 // 2 - a racing deoptimization. We could be doing a vanilla vtable
1940 // call and between the time we fetch the entry address and
1941 // we jump to it the target gets deoptimized. Similar to 1
1942 // we will wind up in the interprter (thru a c2i with c2).
1943 //
1944 address call_addr = NULL;
1945 {
1946 // Get call instruction under lock because another thread may be
1947 // busy patching it.
1948 CompiledICLocker ml(caller_nm);
1949 // Location of call instruction
1950 call_addr = caller_nm->call_instruction_address(pc);
1951 }
1952 // Make sure nmethod doesn't get deoptimized and removed until
1953 // this is done with it.
1954 // CLEANUP - with lazy deopt shouldn't need this lock
1955 nmethodLocker nmlock(caller_nm);
1956
1957 if (call_addr != NULL) {
1958 RelocIterator iter(caller_nm, call_addr, call_addr+1);
1959 int ret = iter.next(); // Get item
1960 if (ret) {
1961 assert(iter.addr() == call_addr, "must find call");
1962 if (iter.type() == relocInfo::static_call_type) {
1963 is_static_call = true;
1964 } else {
1965 assert(iter.type() == relocInfo::virtual_call_type ||
1966 iter.type() == relocInfo::opt_virtual_call_type
1967 , "unexpected relocInfo. type");
1968 }
1969 } else {
1970 assert(!UseInlineCaches, "relocation info. must exist for this address");
1971 }
1972
1973 // Cleaning the inline cache will force a new resolve. This is more robust
1974 // than directly setting it to the new destination, since resolving of calls
1975 // is always done through the same code path. (experience shows that it
1976 // leads to very hard to track down bugs, if an inline cache gets updated
1977 // to a wrong method). It should not be performance critical, since the
1978 // resolve is only done once.
1979
1980 for (;;) {
1981 ICRefillVerifier ic_refill_verifier;
1982 if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1983 InlineCacheBuffer::refill_ic_stubs();
1984 } else {
1985 break;
1986 }
1987 }
1988 }
1989 }
1990
1991 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1992
1993
1994 #ifndef PRODUCT
1995 Atomic::inc(&_wrong_method_ctr);
1996
1997 if (TraceCallFixup) {
1998 ResourceMark rm(thread);
1999 tty->print("handle_wrong_method reresolving call to");
2000 callee_method->print_short_name(tty);
2001 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
2002 }
2003 #endif
2004
2005 return callee_method;
2006 }
2007
2008 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
2009 // The faulting unsafe accesses should be changed to throw the error
2010 // synchronously instead. Meanwhile the faulting instruction will be
2011 // skipped over (effectively turning it into a no-op) and an
2012 // asynchronous exception will be raised which the thread will
2013 // handle at a later point. If the instruction is a load it will
2014 // return garbage.
2015
2016 // Request an async exception.
2017 thread->set_pending_unsafe_access_error();
2018
2019 // Return address of next instruction to execute.
2020 return next_pc;
2021 }
2022
2023 #ifdef ASSERT
2024 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
2025 const BasicType* sig_bt,
2026 const VMRegPair* regs) {
2027 ResourceMark rm;
2028 const int total_args_passed = method->size_of_parameters();
2029 const VMRegPair* regs_with_member_name = regs;
2030 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
2031
2032 const int member_arg_pos = total_args_passed - 1;
2033 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
2034 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
2035
2036 const bool is_outgoing = method->is_method_handle_intrinsic();
2037 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
2038
2039 for (int i = 0; i < member_arg_pos; i++) {
2040 VMReg a = regs_with_member_name[i].first();
2041 VMReg b = regs_without_member_name[i].first();
2042 assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
2043 }
2044 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
2045 }
2046 #endif
2047
2048 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
2049 if (destination != entry_point) {
2050 CodeBlob* callee = CodeCache::find_blob(destination);
2051 // callee == cb seems weird. It means calling interpreter thru stub.
2052 if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
2053 // static call or optimized virtual
2054 if (TraceCallFixup) {
2055 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
2056 moop->print_short_name(tty);
2057 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
2058 }
2059 return true;
2060 } else {
2061 if (TraceCallFixup) {
2062 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
2063 moop->print_short_name(tty);
2064 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
2065 }
2066 // assert is too strong could also be resolve destinations.
2067 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
2068 }
2069 } else {
2070 if (TraceCallFixup) {
2071 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
2072 moop->print_short_name(tty);
2073 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
2074 }
2075 }
2076 return false;
2077 }
2078
2079 // ---------------------------------------------------------------------------
2080 // We are calling the interpreter via a c2i. Normally this would mean that
2081 // we were called by a compiled method. However we could have lost a race
2082 // where we went int -> i2c -> c2i and so the caller could in fact be
2083 // interpreted. If the caller is compiled we attempt to patch the caller
2084 // so he no longer calls into the interpreter.
2085 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
2086 Method* moop(method);
2087
2088 address entry_point = moop->from_compiled_entry_no_trampoline();
2089
2090 // It's possible that deoptimization can occur at a call site which hasn't
2091 // been resolved yet, in which case this function will be called from
2092 // an nmethod that has been patched for deopt and we can ignore the
2093 // request for a fixup.
2094 // Also it is possible that we lost a race in that from_compiled_entry
2095 // is now back to the i2c in that case we don't need to patch and if
2096 // we did we'd leap into space because the callsite needs to use
2097 // "to interpreter" stub in order to load up the Method*. Don't
2098 // ask me how I know this...
2099
2100 CodeBlob* cb = CodeCache::find_blob(caller_pc);
2101 if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
2102 return;
2103 }
2104
2105 // The check above makes sure this is a nmethod.
2106 CompiledMethod* nm = cb->as_compiled_method_or_null();
2107 assert(nm, "must be");
2108
2109 // Get the return PC for the passed caller PC.
2110 address return_pc = caller_pc + frame::pc_return_offset;
2111
2112 // There is a benign race here. We could be attempting to patch to a compiled
2113 // entry point at the same time the callee is being deoptimized. If that is
2114 // the case then entry_point may in fact point to a c2i and we'd patch the
2115 // call site with the same old data. clear_code will set code() to NULL
2116 // at the end of it. If we happen to see that NULL then we can skip trying
2117 // to patch. If we hit the window where the callee has a c2i in the
2118 // from_compiled_entry and the NULL isn't present yet then we lose the race
2119 // and patch the code with the same old data. Asi es la vida.
2120
2121 if (moop->code() == NULL) return;
2122
2123 if (nm->is_in_use()) {
2124 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
2125 CompiledICLocker ic_locker(nm);
2126 if (NativeCall::is_call_before(return_pc)) {
2127 ResourceMark mark;
2128 NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
2129 //
2130 // bug 6281185. We might get here after resolving a call site to a vanilla
2131 // virtual call. Because the resolvee uses the verified entry it may then
2132 // see compiled code and attempt to patch the site by calling us. This would
2133 // then incorrectly convert the call site to optimized and its downhill from
2134 // there. If you're lucky you'll get the assert in the bugid, if not you've
2135 // just made a call site that could be megamorphic into a monomorphic site
2136 // for the rest of its life! Just another racing bug in the life of
2137 // fixup_callers_callsite ...
2138 //
2139 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2140 iter.next();
2141 assert(iter.has_current(), "must have a reloc at java call site");
2142 relocInfo::relocType typ = iter.reloc()->type();
2143 if (typ != relocInfo::static_call_type &&
2144 typ != relocInfo::opt_virtual_call_type &&
2145 typ != relocInfo::static_stub_type) {
2146 return;
2147 }
2148 address destination = call->destination();
2149 if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2150 call->set_destination_mt_safe(entry_point);
2151 }
2152 }
2153 }
2154 JRT_END
2155
2156
2157 // same as JVM_Arraycopy, but called directly from compiled code
2158 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
2159 oopDesc* dest, jint dest_pos,
2160 jint length,
2161 JavaThread* thread)) {
2162 #ifndef PRODUCT
2163 _slow_array_copy_ctr++;
2164 #endif
2165 // Check if we have null pointers
2166 if (src == NULL || dest == NULL) {
2167 THROW(vmSymbols::java_lang_NullPointerException());
2168 }
2169 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
2170 // even though the copy_array API also performs dynamic checks to ensure
2171 // that src and dest are truly arrays (and are conformable).
2172 // The copy_array mechanism is awkward and could be removed, but
2173 // the compilers don't call this function except as a last resort,
2174 // so it probably doesn't matter.
2175 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2176 (arrayOopDesc*)dest, dest_pos,
2177 length, thread);
2178 }
2179 JRT_END
2180
2181 // The caller of generate_class_cast_message() (or one of its callers)
2182 // must use a ResourceMark in order to correctly free the result.
2183 char* SharedRuntime::generate_class_cast_message(
2184 JavaThread* thread, Klass* caster_klass) {
2185
2186 // Get target class name from the checkcast instruction
2187 vframeStream vfst(thread, true);
2188 assert(!vfst.at_end(), "Java frame must exist");
2189 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2190 constantPoolHandle cpool(thread, vfst.method()->constants());
2191 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2192 Symbol* target_klass_name = NULL;
2193 if (target_klass == NULL) {
2194 // This klass should be resolved, but just in case, get the name in the klass slot.
2195 target_klass_name = cpool->klass_name_at(cc.index());
2196 }
2197 return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2198 }
2199
2200
2201 // The caller of generate_class_cast_message() (or one of its callers)
2202 // must use a ResourceMark in order to correctly free the result.
2203 char* SharedRuntime::generate_class_cast_message(
2204 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2205 const char* caster_name = caster_klass->external_name();
2206
2207 assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2208 const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2209 target_klass->external_name();
2210
2211 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2212
2213 const char* caster_klass_description = "";
2214 const char* target_klass_description = "";
2215 const char* klass_separator = "";
2216 if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2217 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2218 } else {
2219 caster_klass_description = caster_klass->class_in_module_of_loader();
2220 target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2221 klass_separator = (target_klass != NULL) ? "; " : "";
2222 }
2223
2224 // add 3 for parenthesis and preceeding space
2225 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2226
2227 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2228 if (message == NULL) {
2229 // Shouldn't happen, but don't cause even more problems if it does
2230 message = const_cast<char*>(caster_klass->external_name());
2231 } else {
2232 jio_snprintf(message,
2233 msglen,
2234 "class %s cannot be cast to class %s (%s%s%s)",
2235 caster_name,
2236 target_name,
2237 caster_klass_description,
2238 klass_separator,
2239 target_klass_description
2240 );
2241 }
2242 return message;
2243 }
2244
2245 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2246 (void) JavaThread::current()->reguard_stack();
2247 JRT_END
2248
2249
2250 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2251 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2252 if (!SafepointSynchronize::is_synchronizing()) {
2253 // Only try quick_enter() if we're not trying to reach a safepoint
2254 // so that the calling thread reaches the safepoint more quickly.
2255 if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2256 }
2257 // NO_ASYNC required because an async exception on the state transition destructor
2258 // would leave you with the lock held and it would never be released.
2259 // The normal monitorenter NullPointerException is thrown without acquiring a lock
2260 // and the model is that an exception implies the method failed.
2261 JRT_BLOCK_NO_ASYNC
2262 oop obj(_obj);
2263 if (PrintBiasedLockingStatistics) {
2264 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2265 }
2266 Handle h_obj(THREAD, obj);
2267 ObjectSynchronizer::enter(h_obj, lock, CHECK);
2268 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2269 JRT_BLOCK_END
2270 JRT_END
2271
2272 // Handles the uncommon cases of monitor unlocking in compiled code
2273 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2274 oop obj(_obj);
2275 assert(JavaThread::current() == THREAD, "invariant");
2276 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2277 // testing was unable to ever fire the assert that guarded it so I have removed it.
2278 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2279 #undef MIGHT_HAVE_PENDING
2280 #ifdef MIGHT_HAVE_PENDING
2281 // Save and restore any pending_exception around the exception mark.
2282 // While the slow_exit must not throw an exception, we could come into
2283 // this routine with one set.
2284 oop pending_excep = NULL;
2285 const char* pending_file;
2286 int pending_line;
2287 if (HAS_PENDING_EXCEPTION) {
2288 pending_excep = PENDING_EXCEPTION;
2289 pending_file = THREAD->exception_file();
2290 pending_line = THREAD->exception_line();
2291 CLEAR_PENDING_EXCEPTION;
2292 }
2293 #endif /* MIGHT_HAVE_PENDING */
2294
2295 {
2296 // Exit must be non-blocking, and therefore no exceptions can be thrown.
2297 EXCEPTION_MARK;
2298 ObjectSynchronizer::exit(obj, lock, THREAD);
2299 }
2300
2301 #ifdef MIGHT_HAVE_PENDING
2302 if (pending_excep != NULL) {
2303 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2304 }
2305 #endif /* MIGHT_HAVE_PENDING */
2306 JRT_END
2307
2308 #ifndef PRODUCT
2309
2310 void SharedRuntime::print_statistics() {
2311 ttyLocker ttyl;
2312 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
2313
2314 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2315
2316 SharedRuntime::print_ic_miss_histogram();
2317
2318 if (CountRemovableExceptions) {
2319 if (_nof_removable_exceptions > 0) {
2320 Unimplemented(); // this counter is not yet incremented
2321 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2322 }
2323 }
2324
2325 // Dump the JRT_ENTRY counters
2326 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2327 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2328 if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2329 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2330 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2331 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2332 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2333
2334 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2335 tty->print_cr("%5d wrong method", _wrong_method_ctr);
2336 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2337 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2338 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2339
2340 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2341 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2342 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2343 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2344 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2345 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2346 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2347 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2348 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2349 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2350 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2351 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2352 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2353 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2354 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2355 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2356
2357 AdapterHandlerLibrary::print_statistics();
2358
2359 if (xtty != NULL) xtty->tail("statistics");
2360 }
2361
2362 inline double percent(int x, int y) {
2363 return 100.0 * x / MAX2(y, 1);
2364 }
2365
2366 class MethodArityHistogram {
2367 public:
2368 enum { MAX_ARITY = 256 };
2369 private:
2370 static int _arity_histogram[MAX_ARITY]; // histogram of #args
2371 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
2372 static int _max_arity; // max. arity seen
2373 static int _max_size; // max. arg size seen
2374
2375 static void add_method_to_histogram(nmethod* nm) {
2376 if (CompiledMethod::nmethod_access_is_safe(nm)) {
2377 Method* method = nm->method();
2378 ArgumentCount args(method->signature());
2379 int arity = args.size() + (method->is_static() ? 0 : 1);
2380 int argsize = method->size_of_parameters();
2381 arity = MIN2(arity, MAX_ARITY-1);
2382 argsize = MIN2(argsize, MAX_ARITY-1);
2383 int count = method->compiled_invocation_count();
2384 _arity_histogram[arity] += count;
2385 _size_histogram[argsize] += count;
2386 _max_arity = MAX2(_max_arity, arity);
2387 _max_size = MAX2(_max_size, argsize);
2388 }
2389 }
2390
2391 void print_histogram_helper(int n, int* histo, const char* name) {
2392 const int N = MIN2(5, n);
2393 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2394 double sum = 0;
2395 double weighted_sum = 0;
2396 int i;
2397 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2398 double rest = sum;
2399 double percent = sum / 100;
2400 for (i = 0; i <= N; i++) {
2401 rest -= histo[i];
2402 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2403 }
2404 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2405 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2406 }
2407
2408 void print_histogram() {
2409 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2410 print_histogram_helper(_max_arity, _arity_histogram, "arity");
2411 tty->print_cr("\nSame for parameter size (in words):");
2412 print_histogram_helper(_max_size, _size_histogram, "size");
2413 tty->cr();
2414 }
2415
2416 public:
2417 MethodArityHistogram() {
2418 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2419 _max_arity = _max_size = 0;
2420 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2421 CodeCache::nmethods_do(add_method_to_histogram);
2422 print_histogram();
2423 }
2424 };
2425
2426 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2427 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2428 int MethodArityHistogram::_max_arity;
2429 int MethodArityHistogram::_max_size;
2430
2431 void SharedRuntime::print_call_statistics(int comp_total) {
2432 tty->print_cr("Calls from compiled code:");
2433 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2434 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2435 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2436 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
2437 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
2438 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2439 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2440 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
2441 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2442 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
2443 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2444 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2445 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
2446 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2447 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2448 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2449 tty->cr();
2450 tty->print_cr("Note 1: counter updates are not MT-safe.");
2451 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2452 tty->print_cr(" %% in nested categories are relative to their category");
2453 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
2454 tty->cr();
2455
2456 MethodArityHistogram h;
2457 }
2458 #endif
2459
2460
2461 // A simple wrapper class around the calling convention information
2462 // that allows sharing of adapters for the same calling convention.
2463 class AdapterFingerPrint : public CHeapObj<mtCode> {
2464 private:
2465 enum {
2466 _basic_type_bits = 4,
2467 _basic_type_mask = right_n_bits(_basic_type_bits),
2468 _basic_types_per_int = BitsPerInt / _basic_type_bits,
2469 _compact_int_count = 3
2470 };
2471 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
2472 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2473
2474 union {
2475 int _compact[_compact_int_count];
2476 int* _fingerprint;
2477 } _value;
2478 int _length; // A negative length indicates the fingerprint is in the compact form,
2479 // Otherwise _value._fingerprint is the array.
2480
2481 // Remap BasicTypes that are handled equivalently by the adapters.
2482 // These are correct for the current system but someday it might be
2483 // necessary to make this mapping platform dependent.
2484 static int adapter_encoding(BasicType in) {
2485 switch (in) {
2486 case T_BOOLEAN:
2487 case T_BYTE:
2488 case T_SHORT:
2489 case T_CHAR:
2490 // There are all promoted to T_INT in the calling convention
2491 return T_INT;
2492
2493 case T_OBJECT:
2494 case T_ARRAY:
2495 // In other words, we assume that any register good enough for
2496 // an int or long is good enough for a managed pointer.
2497 #ifdef _LP64
2498 return T_LONG;
2499 #else
2500 return T_INT;
2501 #endif
2502
2503 case T_INT:
2504 case T_LONG:
2505 case T_FLOAT:
2506 case T_DOUBLE:
2507 case T_VOID:
2508 return in;
2509
2510 default:
2511 ShouldNotReachHere();
2512 return T_CONFLICT;
2513 }
2514 }
2515
2516 public:
2517 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2518 // The fingerprint is based on the BasicType signature encoded
2519 // into an array of ints with eight entries per int.
2520 int* ptr;
2521 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2522 if (len <= _compact_int_count) {
2523 assert(_compact_int_count == 3, "else change next line");
2524 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2525 // Storing the signature encoded as signed chars hits about 98%
2526 // of the time.
2527 _length = -len;
2528 ptr = _value._compact;
2529 } else {
2530 _length = len;
2531 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2532 ptr = _value._fingerprint;
2533 }
2534
2535 // Now pack the BasicTypes with 8 per int
2536 int sig_index = 0;
2537 for (int index = 0; index < len; index++) {
2538 int value = 0;
2539 for (int byte = 0; byte < _basic_types_per_int; byte++) {
2540 int bt = ((sig_index < total_args_passed)
2541 ? adapter_encoding(sig_bt[sig_index++])
2542 : 0);
2543 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2544 value = (value << _basic_type_bits) | bt;
2545 }
2546 ptr[index] = value;
2547 }
2548 }
2549
2550 ~AdapterFingerPrint() {
2551 if (_length > 0) {
2552 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2553 }
2554 }
2555
2556 int value(int index) {
2557 if (_length < 0) {
2558 return _value._compact[index];
2559 }
2560 return _value._fingerprint[index];
2561 }
2562 int length() {
2563 if (_length < 0) return -_length;
2564 return _length;
2565 }
2566
2567 bool is_compact() {
2568 return _length <= 0;
2569 }
2570
2571 unsigned int compute_hash() {
2572 int hash = 0;
2573 for (int i = 0; i < length(); i++) {
2574 int v = value(i);
2575 hash = (hash << 8) ^ v ^ (hash >> 5);
2576 }
2577 return (unsigned int)hash;
2578 }
2579
2580 const char* as_string() {
2581 stringStream st;
2582 st.print("0x");
2583 for (int i = 0; i < length(); i++) {
2584 st.print("%08x", value(i));
2585 }
2586 return st.as_string();
2587 }
2588
2589 bool equals(AdapterFingerPrint* other) {
2590 if (other->_length != _length) {
2591 return false;
2592 }
2593 if (_length < 0) {
2594 assert(_compact_int_count == 3, "else change next line");
2595 return _value._compact[0] == other->_value._compact[0] &&
2596 _value._compact[1] == other->_value._compact[1] &&
2597 _value._compact[2] == other->_value._compact[2];
2598 } else {
2599 for (int i = 0; i < _length; i++) {
2600 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2601 return false;
2602 }
2603 }
2604 }
2605 return true;
2606 }
2607 };
2608
2609
2610 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2611 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2612 friend class AdapterHandlerTableIterator;
2613
2614 private:
2615
2616 #ifndef PRODUCT
2617 static int _lookups; // number of calls to lookup
2618 static int _buckets; // number of buckets checked
2619 static int _equals; // number of buckets checked with matching hash
2620 static int _hits; // number of successful lookups
2621 static int _compact; // number of equals calls with compact signature
2622 #endif
2623
2624 AdapterHandlerEntry* bucket(int i) {
2625 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2626 }
2627
2628 public:
2629 AdapterHandlerTable()
2630 : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2631
2632 // Create a new entry suitable for insertion in the table
2633 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) {
2634 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2635 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2636 if (DumpSharedSpaces) {
2637 ((CDSAdapterHandlerEntry*)entry)->init();
2638 }
2639 return entry;
2640 }
2641
2642 // Insert an entry into the table
2643 void add(AdapterHandlerEntry* entry) {
2644 int index = hash_to_index(entry->hash());
2645 add_entry(index, entry);
2646 }
2647
2648 void free_entry(AdapterHandlerEntry* entry) {
2649 entry->deallocate();
2650 BasicHashtable<mtCode>::free_entry(entry);
2651 }
2652
2653 // Find a entry with the same fingerprint if it exists
2654 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2655 NOT_PRODUCT(_lookups++);
2656 AdapterFingerPrint fp(total_args_passed, sig_bt);
2657 unsigned int hash = fp.compute_hash();
2658 int index = hash_to_index(hash);
2659 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2660 NOT_PRODUCT(_buckets++);
2661 if (e->hash() == hash) {
2662 NOT_PRODUCT(_equals++);
2663 if (fp.equals(e->fingerprint())) {
2664 #ifndef PRODUCT
2665 if (fp.is_compact()) _compact++;
2666 _hits++;
2667 #endif
2668 return e;
2669 }
2670 }
2671 }
2672 return NULL;
2673 }
2674
2675 #ifndef PRODUCT
2676 void print_statistics() {
2677 ResourceMark rm;
2678 int longest = 0;
2679 int empty = 0;
2680 int total = 0;
2681 int nonempty = 0;
2682 for (int index = 0; index < table_size(); index++) {
2683 int count = 0;
2684 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2685 count++;
2686 }
2687 if (count != 0) nonempty++;
2688 if (count == 0) empty++;
2689 if (count > longest) longest = count;
2690 total += count;
2691 }
2692 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2693 empty, longest, total, total / (double)nonempty);
2694 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2695 _lookups, _buckets, _equals, _hits, _compact);
2696 }
2697 #endif
2698 };
2699
2700
2701 #ifndef PRODUCT
2702
2703 int AdapterHandlerTable::_lookups;
2704 int AdapterHandlerTable::_buckets;
2705 int AdapterHandlerTable::_equals;
2706 int AdapterHandlerTable::_hits;
2707 int AdapterHandlerTable::_compact;
2708
2709 #endif
2710
2711 class AdapterHandlerTableIterator : public StackObj {
2712 private:
2713 AdapterHandlerTable* _table;
2714 int _index;
2715 AdapterHandlerEntry* _current;
2716
2717 void scan() {
2718 while (_index < _table->table_size()) {
2719 AdapterHandlerEntry* a = _table->bucket(_index);
2720 _index++;
2721 if (a != NULL) {
2722 _current = a;
2723 return;
2724 }
2725 }
2726 }
2727
2728 public:
2729 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2730 scan();
2731 }
2732 bool has_next() {
2733 return _current != NULL;
2734 }
2735 AdapterHandlerEntry* next() {
2736 if (_current != NULL) {
2737 AdapterHandlerEntry* result = _current;
2738 _current = _current->next();
2739 if (_current == NULL) scan();
2740 return result;
2741 } else {
2742 return NULL;
2743 }
2744 }
2745 };
2746
2747
2748 // ---------------------------------------------------------------------------
2749 // Implementation of AdapterHandlerLibrary
2750 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2751 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2752 const int AdapterHandlerLibrary_size = 16*K;
2753 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2754
2755 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2756 // Should be called only when AdapterHandlerLibrary_lock is active.
2757 if (_buffer == NULL) // Initialize lazily
2758 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2759 return _buffer;
2760 }
2761
2762 extern "C" void unexpected_adapter_call() {
2763 ShouldNotCallThis();
2764 }
2765
2766 void AdapterHandlerLibrary::initialize() {
2767 if (_adapters != NULL) return;
2768 _adapters = new AdapterHandlerTable();
2769
2770 // Create a special handler for abstract methods. Abstract methods
2771 // are never compiled so an i2c entry is somewhat meaningless, but
2772 // throw AbstractMethodError just in case.
2773 // Pass wrong_method_abstract for the c2i transitions to return
2774 // AbstractMethodError for invalid invocations.
2775 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2776 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2777 StubRoutines::throw_AbstractMethodError_entry(),
2778 wrong_method_abstract, wrong_method_abstract);
2779 }
2780
2781 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2782 address i2c_entry,
2783 address c2i_entry,
2784 address c2i_unverified_entry,
2785 address c2i_no_clinit_check_entry) {
2786 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2787 }
2788
2789 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2790 AdapterHandlerEntry* entry = get_adapter0(method);
2791 if (entry != NULL && method->is_shared()) {
2792 // See comments around Method::link_method()
2793 MutexLocker mu(AdapterHandlerLibrary_lock);
2794 if (method->adapter() == NULL) {
2795 method->update_adapter_trampoline(entry);
2796 }
2797 address trampoline = method->from_compiled_entry();
2798 if (*(int*)trampoline == 0) {
2799 CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2800 MacroAssembler _masm(&buffer);
2801 SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2802 assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2803 _masm.flush();
2804
2805 if (PrintInterpreter) {
2806 Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2807 }
2808 }
2809 }
2810
2811 return entry;
2812 }
2813
2814 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2815 // Use customized signature handler. Need to lock around updates to
2816 // the AdapterHandlerTable (it is not safe for concurrent readers
2817 // and a single writer: this could be fixed if it becomes a
2818 // problem).
2819
2820 ResourceMark rm;
2821
2822 NOT_PRODUCT(int insts_size);
2823 AdapterBlob* new_adapter = NULL;
2824 AdapterHandlerEntry* entry = NULL;
2825 AdapterFingerPrint* fingerprint = NULL;
2826 {
2827 MutexLocker mu(AdapterHandlerLibrary_lock);
2828 // make sure data structure is initialized
2829 initialize();
2830
2831 if (method->is_abstract()) {
2832 return _abstract_method_handler;
2833 }
2834
2835 // Fill in the signature array, for the calling-convention call.
2836 int total_args_passed = method->size_of_parameters(); // All args on stack
2837
2838 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2839 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2840 int i = 0;
2841 if (!method->is_static()) // Pass in receiver first
2842 sig_bt[i++] = T_OBJECT;
2843 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2844 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
2845 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2846 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
2847 }
2848 assert(i == total_args_passed, "");
2849
2850 // Lookup method signature's fingerprint
2851 entry = _adapters->lookup(total_args_passed, sig_bt);
2852
2853 #ifdef ASSERT
2854 AdapterHandlerEntry* shared_entry = NULL;
2855 // Start adapter sharing verification only after the VM is booted.
2856 if (VerifyAdapterSharing && (entry != NULL)) {
2857 shared_entry = entry;
2858 entry = NULL;
2859 }
2860 #endif
2861
2862 if (entry != NULL) {
2863 return entry;
2864 }
2865
2866 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2867 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2868
2869 // Make a C heap allocated version of the fingerprint to store in the adapter
2870 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2871
2872 // StubRoutines::code2() is initialized after this function can be called. As a result,
2873 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2874 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2875 // stub that ensure that an I2C stub is called from an interpreter frame.
2876 bool contains_all_checks = StubRoutines::code2() != NULL;
2877
2878 // Create I2C & C2I handlers
2879 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2880 if (buf != NULL) {
2881 CodeBuffer buffer(buf);
2882 short buffer_locs[20];
2883 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2884 sizeof(buffer_locs)/sizeof(relocInfo));
2885
2886 MacroAssembler _masm(&buffer);
2887 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2888 total_args_passed,
2889 comp_args_on_stack,
2890 sig_bt,
2891 regs,
2892 fingerprint);
2893 #ifdef ASSERT
2894 if (VerifyAdapterSharing) {
2895 if (shared_entry != NULL) {
2896 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2897 // Release the one just created and return the original
2898 _adapters->free_entry(entry);
2899 return shared_entry;
2900 } else {
2901 entry->save_code(buf->code_begin(), buffer.insts_size());
2902 }
2903 }
2904 #endif
2905
2906 new_adapter = AdapterBlob::create(&buffer);
2907 NOT_PRODUCT(insts_size = buffer.insts_size());
2908 }
2909 if (new_adapter == NULL) {
2910 // CodeCache is full, disable compilation
2911 // Ought to log this but compile log is only per compile thread
2912 // and we're some non descript Java thread.
2913 return NULL; // Out of CodeCache space
2914 }
2915 entry->relocate(new_adapter->content_begin());
2916 #ifndef PRODUCT
2917 // debugging suppport
2918 if (PrintAdapterHandlers || PrintStubCode) {
2919 ttyLocker ttyl;
2920 entry->print_adapter_on(tty);
2921 tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2922 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2923 method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2924 tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2925 if (Verbose || PrintStubCode) {
2926 address first_pc = entry->base_address();
2927 if (first_pc != NULL) {
2928 Disassembler::decode(first_pc, first_pc + insts_size);
2929 tty->cr();
2930 }
2931 }
2932 }
2933 #endif
2934 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2935 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2936 if (contains_all_checks || !VerifyAdapterCalls) {
2937 _adapters->add(entry);
2938 }
2939 }
2940 // Outside of the lock
2941 if (new_adapter != NULL) {
2942 char blob_id[256];
2943 jio_snprintf(blob_id,
2944 sizeof(blob_id),
2945 "%s(%s)@" PTR_FORMAT,
2946 new_adapter->name(),
2947 fingerprint->as_string(),
2948 new_adapter->content_begin());
2949 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2950
2951 if (JvmtiExport::should_post_dynamic_code_generated()) {
2952 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2953 }
2954 }
2955 return entry;
2956 }
2957
2958 address AdapterHandlerEntry::base_address() {
2959 address base = _i2c_entry;
2960 if (base == NULL) base = _c2i_entry;
2961 assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2962 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2963 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
2964 return base;
2965 }
2966
2967 void AdapterHandlerEntry::relocate(address new_base) {
2968 address old_base = base_address();
2969 assert(old_base != NULL, "");
2970 ptrdiff_t delta = new_base - old_base;
2971 if (_i2c_entry != NULL)
2972 _i2c_entry += delta;
2973 if (_c2i_entry != NULL)
2974 _c2i_entry += delta;
2975 if (_c2i_unverified_entry != NULL)
2976 _c2i_unverified_entry += delta;
2977 if (_c2i_no_clinit_check_entry != NULL)
2978 _c2i_no_clinit_check_entry += delta;
2979 assert(base_address() == new_base, "");
2980 }
2981
2982
2983 void AdapterHandlerEntry::deallocate() {
2984 delete _fingerprint;
2985 #ifdef ASSERT
2986 FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2987 #endif
2988 }
2989
2990
2991 #ifdef ASSERT
2992 // Capture the code before relocation so that it can be compared
2993 // against other versions. If the code is captured after relocation
2994 // then relative instructions won't be equivalent.
2995 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2996 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2997 _saved_code_length = length;
2998 memcpy(_saved_code, buffer, length);
2999 }
3000
3001
3002 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
3003 if (length != _saved_code_length) {
3004 return false;
3005 }
3006
3007 return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
3008 }
3009 #endif
3010
3011
3012 /**
3013 * Create a native wrapper for this native method. The wrapper converts the
3014 * Java-compiled calling convention to the native convention, handles
3015 * arguments, and transitions to native. On return from the native we transition
3016 * back to java blocking if a safepoint is in progress.
3017 */
3018 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3019 ResourceMark rm;
3020 nmethod* nm = NULL;
3021 address critical_entry = NULL;
3022
3023 assert(method->is_native(), "must be native");
3024 assert(method->is_method_handle_intrinsic() ||
3025 method->has_native_function(), "must have something valid to call!");
3026
3027 if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
3028 // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
3029 critical_entry = NativeLookup::lookup_critical_entry(method);
3030 }
3031
3032 {
3033 // Perform the work while holding the lock, but perform any printing outside the lock
3034 MutexLocker mu(AdapterHandlerLibrary_lock);
3035 // See if somebody beat us to it
3036 if (method->code() != NULL) {
3037 return;
3038 }
3039
3040 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3041 assert(compile_id > 0, "Must generate native wrapper");
3042
3043
3044 ResourceMark rm;
3045 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3046 if (buf != NULL) {
3047 CodeBuffer buffer(buf);
3048 double locs_buf[20];
3049 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3050 MacroAssembler _masm(&buffer);
3051
3052 // Fill in the signature array, for the calling-convention call.
3053 const int total_args_passed = method->size_of_parameters();
3054
3055 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3056 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3057 int i=0;
3058 if (!method->is_static()) // Pass in receiver first
3059 sig_bt[i++] = T_OBJECT;
3060 SignatureStream ss(method->signature());
3061 for (; !ss.at_return_type(); ss.next()) {
3062 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
3063 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
3064 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
3065 }
3066 assert(i == total_args_passed, "");
3067 BasicType ret_type = ss.type();
3068
3069 // Now get the compiled-Java layout as input (or output) arguments.
3070 // NOTE: Stubs for compiled entry points of method handle intrinsics
3071 // are just trampolines so the argument registers must be outgoing ones.
3072 const bool is_outgoing = method->is_method_handle_intrinsic();
3073 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
3074
3075 // Generate the compiled-to-native wrapper code
3076 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
3077
3078 if (nm != NULL) {
3079 {
3080 MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
3081 if (nm->make_in_use()) {
3082 method->set_code(method, nm);
3083 }
3084 }
3085
3086 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3087 if (directive->PrintAssemblyOption) {
3088 nm->print_code();
3089 }
3090 DirectivesStack::release(directive);
3091 }
3092 }
3093 } // Unlock AdapterHandlerLibrary_lock
3094
3095
3096 // Install the generated code.
3097 if (nm != NULL) {
3098 const char *msg = method->is_static() ? "(static)" : "";
3099 CompileTask::print_ul(nm, msg);
3100 if (PrintCompilation) {
3101 ttyLocker ttyl;
3102 CompileTask::print(tty, nm, msg);
3103 }
3104 nm->post_compiled_method_load_event();
3105 }
3106 }
3107
3108 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3109 assert(thread == JavaThread::current(), "must be");
3110 // The code is about to enter a JNI lazy critical native method and
3111 // _needs_gc is true, so if this thread is already in a critical
3112 // section then just return, otherwise this thread should block
3113 // until needs_gc has been cleared.
3114 if (thread->in_critical()) {
3115 return;
3116 }
3117 // Lock and unlock a critical section to give the system a chance to block
3118 GCLocker::lock_critical(thread);
3119 GCLocker::unlock_critical(thread);
3120 JRT_END
3121
3122 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
3123 assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3124 assert(obj != NULL, "Should not be null");
3125 oop o(obj);
3126 o = Universe::heap()->pin_object(thread, o);
3127 assert(o != NULL, "Should not be null");
3128 return o;
3129 JRT_END
3130
3131 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
3132 assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3133 assert(obj != NULL, "Should not be null");
3134 oop o(obj);
3135 Universe::heap()->unpin_object(thread, o);
3136 JRT_END
3137
3138 // -------------------------------------------------------------------------
3139 // Java-Java calling convention
3140 // (what you use when Java calls Java)
3141
3142 //------------------------------name_for_receiver----------------------------------
3143 // For a given signature, return the VMReg for parameter 0.
3144 VMReg SharedRuntime::name_for_receiver() {
3145 VMRegPair regs;
3146 BasicType sig_bt = T_OBJECT;
3147 (void) java_calling_convention(&sig_bt, ®s, 1, true);
3148 // Return argument 0 register. In the LP64 build pointers
3149 // take 2 registers, but the VM wants only the 'main' name.
3150 return regs.first();
3151 }
3152
3153 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3154 // This method is returning a data structure allocating as a
3155 // ResourceObject, so do not put any ResourceMarks in here.
3156
3157 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3158 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3159 int cnt = 0;
3160 if (has_receiver) {
3161 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3162 }
3163
3164 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3165 BasicType type = ss.type();
3166 sig_bt[cnt++] = type;
3167 if (is_double_word_type(type))
3168 sig_bt[cnt++] = T_VOID;
3169 }
3170
3171 if (has_appendix) {
3172 sig_bt[cnt++] = T_OBJECT;
3173 }
3174
3175 assert(cnt < 256, "grow table size");
3176
3177 int comp_args_on_stack;
3178 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3179
3180 // the calling convention doesn't count out_preserve_stack_slots so
3181 // we must add that in to get "true" stack offsets.
3182
3183 if (comp_args_on_stack) {
3184 for (int i = 0; i < cnt; i++) {
3185 VMReg reg1 = regs[i].first();
3186 if (reg1->is_stack()) {
3187 // Yuck
3188 reg1 = reg1->bias(out_preserve_stack_slots());
3189 }
3190 VMReg reg2 = regs[i].second();
3191 if (reg2->is_stack()) {
3192 // Yuck
3193 reg2 = reg2->bias(out_preserve_stack_slots());
3194 }
3195 regs[i].set_pair(reg2, reg1);
3196 }
3197 }
3198
3199 // results
3200 *arg_size = cnt;
3201 return regs;
3202 }
3203
3204 // OSR Migration Code
3205 //
3206 // This code is used convert interpreter frames into compiled frames. It is
3207 // called from very start of a compiled OSR nmethod. A temp array is
3208 // allocated to hold the interesting bits of the interpreter frame. All
3209 // active locks are inflated to allow them to move. The displaced headers and
3210 // active interpreter locals are copied into the temp buffer. Then we return
3211 // back to the compiled code. The compiled code then pops the current
3212 // interpreter frame off the stack and pushes a new compiled frame. Then it
3213 // copies the interpreter locals and displaced headers where it wants.
3214 // Finally it calls back to free the temp buffer.
3215 //
3216 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3217
3218 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3219
3220 //
3221 // This code is dependent on the memory layout of the interpreter local
3222 // array and the monitors. On all of our platforms the layout is identical
3223 // so this code is shared. If some platform lays the their arrays out
3224 // differently then this code could move to platform specific code or
3225 // the code here could be modified to copy items one at a time using
3226 // frame accessor methods and be platform independent.
3227
3228 frame fr = thread->last_frame();
3229 assert(fr.is_interpreted_frame(), "");
3230 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3231
3232 // Figure out how many monitors are active.
3233 int active_monitor_count = 0;
3234 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3235 kptr < fr.interpreter_frame_monitor_begin();
3236 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3237 if (kptr->obj() != NULL) active_monitor_count++;
3238 }
3239
3240 // QQQ we could place number of active monitors in the array so that compiled code
3241 // could double check it.
3242
3243 Method* moop = fr.interpreter_frame_method();
3244 int max_locals = moop->max_locals();
3245 // Allocate temp buffer, 1 word per local & 2 per active monitor
3246 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3247 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3248
3249 // Copy the locals. Order is preserved so that loading of longs works.
3250 // Since there's no GC I can copy the oops blindly.
3251 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3252 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3253 (HeapWord*)&buf[0],
3254 max_locals);
3255
3256 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
3257 int i = max_locals;
3258 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3259 kptr2 < fr.interpreter_frame_monitor_begin();
3260 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3261 if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
3262 BasicLock *lock = kptr2->lock();
3263 // Inflate so the displaced header becomes position-independent
3264 if (lock->displaced_header().is_unlocked())
3265 ObjectSynchronizer::inflate_helper(kptr2->obj());
3266 // Now the displaced header is free to move
3267 buf[i++] = (intptr_t)lock->displaced_header().value();
3268 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3269 }
3270 }
3271 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3272
3273 return buf;
3274 JRT_END
3275
3276 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3277 FREE_C_HEAP_ARRAY(intptr_t, buf);
3278 JRT_END
3279
3280 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3281 AdapterHandlerTableIterator iter(_adapters);
3282 while (iter.has_next()) {
3283 AdapterHandlerEntry* a = iter.next();
3284 if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3285 }
3286 return false;
3287 }
3288
3289 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3290 AdapterHandlerTableIterator iter(_adapters);
3291 while (iter.has_next()) {
3292 AdapterHandlerEntry* a = iter.next();
3293 if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3294 st->print("Adapter for signature: ");
3295 a->print_adapter_on(tty);
3296 return;
3297 }
3298 }
3299 assert(false, "Should have found handler");
3300 }
3301
3302 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3303 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3304 if (get_i2c_entry() != NULL) {
3305 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3306 }
3307 if (get_c2i_entry() != NULL) {
3308 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3309 }
3310 if (get_c2i_unverified_entry() != NULL) {
3311 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3312 }
3313 if (get_c2i_no_clinit_check_entry() != NULL) {
3314 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3315 }
3316 st->cr();
3317 }
3318
3319 #if INCLUDE_CDS
3320
3321 void CDSAdapterHandlerEntry::init() {
3322 assert(DumpSharedSpaces, "used during dump time only");
3323 _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3324 _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3325 };
3326
3327 #endif // INCLUDE_CDS
3328
3329
3330 #ifndef PRODUCT
3331
3332 void AdapterHandlerLibrary::print_statistics() {
3333 _adapters->print_statistics();
3334 }
3335
3336 #endif /* PRODUCT */
3337
3338 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3339 assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3340 if (thread->stack_reserved_zone_disabled()) {
3341 thread->enable_stack_reserved_zone();
3342 }
3343 thread->set_reserved_stack_activation(thread->stack_base());
3344 JRT_END
3345
3346 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3347 ResourceMark rm(thread);
3348 frame activation;
3349 CompiledMethod* nm = NULL;
3350 int count = 1;
3351
3352 assert(fr.is_java_frame(), "Must start on Java frame");
3353
3354 while (true) {
3355 Method* method = NULL;
3356 bool found = false;
3357 if (fr.is_interpreted_frame()) {
3358 method = fr.interpreter_frame_method();
3359 if (method != NULL && method->has_reserved_stack_access()) {
3360 found = true;
3361 }
3362 } else {
3363 CodeBlob* cb = fr.cb();
3364 if (cb != NULL && cb->is_compiled()) {
3365 nm = cb->as_compiled_method();
3366 method = nm->method();
3367 // scope_desc_near() must be used, instead of scope_desc_at() because on
3368 // SPARC, the pcDesc can be on the delay slot after the call instruction.
3369 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3370 method = sd->method();
3371 if (method != NULL && method->has_reserved_stack_access()) {
3372 found = true;
3373 }
3374 }
3375 }
3376 }
3377 if (found) {
3378 activation = fr;
3379 warning("Potentially dangerous stack overflow in "
3380 "ReservedStackAccess annotated method %s [%d]",
3381 method->name_and_sig_as_C_string(), count++);
3382 EventReservedStackActivation event;
3383 if (event.should_commit()) {
3384 event.set_method(method);
3385 event.commit();
3386 }
3387 }
3388 if (fr.is_first_java_frame()) {
3389 break;
3390 } else {
3391 fr = fr.java_sender();
3392 }
3393 }
3394 return activation;
3395 }
3396
3397 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3398 // After any safepoint, just before going back to compiled code,
3399 // we inform the GC that we will be doing initializing writes to
3400 // this object in the future without emitting card-marks, so
3401 // GC may take any compensating steps.
3402
3403 oop new_obj = thread->vm_result();
3404 if (new_obj == NULL) return;
3405
3406 BarrierSet *bs = BarrierSet::barrier_set();
3407 bs->on_slowpath_allocation_exit(thread, new_obj);
3408 }