1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/init.hpp"
  63 #include "runtime/interfaceSupport.inline.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/vframe.inline.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/dtrace.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/hashtable.inline.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/xmlstream.hpp"
  76 #ifdef COMPILER1
  77 #include "c1/c1_Runtime1.hpp"
  78 #endif
  79 #if INCLUDE_TSAN
  80 #include "tsan/tsanExternalDecls.hpp"
  81 #include "tsan/tsanOopMap.hpp"
  82 #endif
  83 
  84 // Shared stub locations
  85 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  86 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  87 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  91 address             SharedRuntime::_resolve_static_call_entry;
  92 
  93 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  97 
  98 #ifdef COMPILER2
  99 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 100 #endif // COMPILER2
 101 
 102 
 103 //----------------------------generate_stubs-----------------------------------
 104 void SharedRuntime::generate_stubs() {
 105   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 106   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 107   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 108   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 109   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 110   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 111   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 112 
 113 #if COMPILER2_OR_JVMCI
 114   // Vectors are generated only by C2 and JVMCI.
 115   bool support_wide = is_wide_vector(MaxVectorSize);
 116   if (support_wide) {
 117     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 118   }
 119 #endif // COMPILER2_OR_JVMCI
 120   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 121   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 122 
 123   generate_deopt_blob();
 124 
 125 #ifdef COMPILER2
 126   generate_uncommon_trap_blob();
 127 #endif // COMPILER2
 128 }
 129 
 130 #include <math.h>
 131 
 132 // Implementation of SharedRuntime
 133 
 134 #ifndef PRODUCT
 135 // For statistics
 136 int SharedRuntime::_ic_miss_ctr = 0;
 137 int SharedRuntime::_wrong_method_ctr = 0;
 138 int SharedRuntime::_resolve_static_ctr = 0;
 139 int SharedRuntime::_resolve_virtual_ctr = 0;
 140 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 141 int SharedRuntime::_implicit_null_throws = 0;
 142 int SharedRuntime::_implicit_div0_throws = 0;
 143 int SharedRuntime::_throw_null_ctr = 0;
 144 
 145 int SharedRuntime::_nof_normal_calls = 0;
 146 int SharedRuntime::_nof_optimized_calls = 0;
 147 int SharedRuntime::_nof_inlined_calls = 0;
 148 int SharedRuntime::_nof_megamorphic_calls = 0;
 149 int SharedRuntime::_nof_static_calls = 0;
 150 int SharedRuntime::_nof_inlined_static_calls = 0;
 151 int SharedRuntime::_nof_interface_calls = 0;
 152 int SharedRuntime::_nof_optimized_interface_calls = 0;
 153 int SharedRuntime::_nof_inlined_interface_calls = 0;
 154 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 155 int SharedRuntime::_nof_removable_exceptions = 0;
 156 
 157 int SharedRuntime::_new_instance_ctr=0;
 158 int SharedRuntime::_new_array_ctr=0;
 159 int SharedRuntime::_multi1_ctr=0;
 160 int SharedRuntime::_multi2_ctr=0;
 161 int SharedRuntime::_multi3_ctr=0;
 162 int SharedRuntime::_multi4_ctr=0;
 163 int SharedRuntime::_multi5_ctr=0;
 164 int SharedRuntime::_mon_enter_stub_ctr=0;
 165 int SharedRuntime::_mon_exit_stub_ctr=0;
 166 int SharedRuntime::_mon_enter_ctr=0;
 167 int SharedRuntime::_mon_exit_ctr=0;
 168 int SharedRuntime::_partial_subtype_ctr=0;
 169 int SharedRuntime::_jbyte_array_copy_ctr=0;
 170 int SharedRuntime::_jshort_array_copy_ctr=0;
 171 int SharedRuntime::_jint_array_copy_ctr=0;
 172 int SharedRuntime::_jlong_array_copy_ctr=0;
 173 int SharedRuntime::_oop_array_copy_ctr=0;
 174 int SharedRuntime::_checkcast_array_copy_ctr=0;
 175 int SharedRuntime::_unsafe_array_copy_ctr=0;
 176 int SharedRuntime::_generic_array_copy_ctr=0;
 177 int SharedRuntime::_slow_array_copy_ctr=0;
 178 int SharedRuntime::_find_handler_ctr=0;
 179 int SharedRuntime::_rethrow_ctr=0;
 180 
 181 int     SharedRuntime::_ICmiss_index                    = 0;
 182 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 184 
 185 
 186 void SharedRuntime::trace_ic_miss(address at) {
 187   for (int i = 0; i < _ICmiss_index; i++) {
 188     if (_ICmiss_at[i] == at) {
 189       _ICmiss_count[i]++;
 190       return;
 191     }
 192   }
 193   int index = _ICmiss_index++;
 194   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 195   _ICmiss_at[index] = at;
 196   _ICmiss_count[index] = 1;
 197 }
 198 
 199 void SharedRuntime::print_ic_miss_histogram() {
 200   if (ICMissHistogram) {
 201     tty->print_cr("IC Miss Histogram:");
 202     int tot_misses = 0;
 203     for (int i = 0; i < _ICmiss_index; i++) {
 204       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 205       tot_misses += _ICmiss_count[i];
 206     }
 207     tty->print_cr("Total IC misses: %7d", tot_misses);
 208   }
 209 }
 210 #endif // PRODUCT
 211 
 212 
 213 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 214   return x * y;
 215 JRT_END
 216 
 217 
 218 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 219   if (x == min_jlong && y == CONST64(-1)) {
 220     return x;
 221   } else {
 222     return x / y;
 223   }
 224 JRT_END
 225 
 226 
 227 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 228   if (x == min_jlong && y == CONST64(-1)) {
 229     return 0;
 230   } else {
 231     return x % y;
 232   }
 233 JRT_END
 234 
 235 
 236 const juint  float_sign_mask  = 0x7FFFFFFF;
 237 const juint  float_infinity   = 0x7F800000;
 238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 239 const julong double_infinity  = CONST64(0x7FF0000000000000);
 240 
 241 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 242 #ifdef _WIN64
 243   // 64-bit Windows on amd64 returns the wrong values for
 244   // infinity operands.
 245   union { jfloat f; juint i; } xbits, ybits;
 246   xbits.f = x;
 247   ybits.f = y;
 248   // x Mod Infinity == x unless x is infinity
 249   if (((xbits.i & float_sign_mask) != float_infinity) &&
 250        ((ybits.i & float_sign_mask) == float_infinity) ) {
 251     return x;
 252   }
 253   return ((jfloat)fmod_winx64((double)x, (double)y));
 254 #else
 255   return ((jfloat)fmod((double)x,(double)y));
 256 #endif
 257 JRT_END
 258 
 259 
 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 261 #ifdef _WIN64
 262   union { jdouble d; julong l; } xbits, ybits;
 263   xbits.d = x;
 264   ybits.d = y;
 265   // x Mod Infinity == x unless x is infinity
 266   if (((xbits.l & double_sign_mask) != double_infinity) &&
 267        ((ybits.l & double_sign_mask) == double_infinity) ) {
 268     return x;
 269   }
 270   return ((jdouble)fmod_winx64((double)x, (double)y));
 271 #else
 272   return ((jdouble)fmod((double)x,(double)y));
 273 #endif
 274 JRT_END
 275 
 276 #ifdef __SOFTFP__
 277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 278   return x + y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 282   return x - y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 286   return x * y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 290   return x / y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 310   return (jfloat)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 318   return (jdouble)x;
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 322   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 326   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 330   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 // Functions to return the opposite of the aeabi functions for nan.
 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 343   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 351   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 359   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 367   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 // Intrinsics make gcc generate code for these.
 371 float  SharedRuntime::fneg(float f)   {
 372   return -f;
 373 }
 374 
 375 double SharedRuntime::dneg(double f)  {
 376   return -f;
 377 }
 378 
 379 #endif // __SOFTFP__
 380 
 381 #if defined(__SOFTFP__) || defined(E500V2)
 382 // Intrinsics make gcc generate code for these.
 383 double SharedRuntime::dabs(double f)  {
 384   return (f <= (double)0.0) ? (double)0.0 - f : f;
 385 }
 386 
 387 #endif
 388 
 389 #if defined(__SOFTFP__) || defined(PPC)
 390 double SharedRuntime::dsqrt(double f) {
 391   return sqrt(f);
 392 }
 393 #endif
 394 
 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 396   if (g_isnan(x))
 397     return 0;
 398   if (x >= (jfloat) max_jint)
 399     return max_jint;
 400   if (x <= (jfloat) min_jint)
 401     return min_jint;
 402   return (jint) x;
 403 JRT_END
 404 
 405 
 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jlong)
 410     return max_jlong;
 411   if (x <= (jfloat) min_jlong)
 412     return min_jlong;
 413   return (jlong) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jdouble) max_jint)
 421     return max_jint;
 422   if (x <= (jdouble) min_jint)
 423     return min_jint;
 424   return (jint) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jlong)
 432     return max_jlong;
 433   if (x <= (jdouble) min_jlong)
 434     return min_jlong;
 435   return (jlong) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 440   return (jfloat)x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 445   return (jfloat)x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 450   return (jdouble)x;
 451 JRT_END
 452 
 453 // Exception handling across interpreter/compiler boundaries
 454 //
 455 // exception_handler_for_return_address(...) returns the continuation address.
 456 // The continuation address is the entry point of the exception handler of the
 457 // previous frame depending on the return address.
 458 
 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 460   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 461   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 462 
 463   // Reset method handle flag.
 464   thread->set_is_method_handle_return(false);
 465 
 466 #if INCLUDE_JVMCI
 467   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 468   // and other exception handler continuations do not read it
 469   thread->set_exception_pc(NULL);
 470 #endif // INCLUDE_JVMCI
 471 
 472   // The fastest case first
 473   CodeBlob* blob = CodeCache::find_blob(return_address);
 474   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 475   if (nm != NULL) {
 476     // Set flag if return address is a method handle call site.
 477     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 478     // native nmethods don't have exception handlers
 479     assert(!nm->is_native_method(), "no exception handler");
 480     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 481     if (nm->is_deopt_pc(return_address)) {
 482       // If we come here because of a stack overflow, the stack may be
 483       // unguarded. Reguard the stack otherwise if we return to the
 484       // deopt blob and the stack bang causes a stack overflow we
 485       // crash.
 486       bool guard_pages_enabled = thread->stack_guards_enabled();
 487       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 488       if (thread->reserved_stack_activation() != thread->stack_base()) {
 489         thread->set_reserved_stack_activation(thread->stack_base());
 490       }
 491       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 492       return SharedRuntime::deopt_blob()->unpack_with_exception();
 493     } else {
 494       return nm->exception_begin();
 495     }
 496   }
 497 
 498   // Entry code
 499   if (StubRoutines::returns_to_call_stub(return_address)) {
 500     return StubRoutines::catch_exception_entry();
 501   }
 502   // Interpreted code
 503   if (Interpreter::contains(return_address)) {
 504     return Interpreter::rethrow_exception_entry();
 505   }
 506 
 507   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 508   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 509 
 510 #ifndef PRODUCT
 511   { ResourceMark rm;
 512     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 513     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 514     tty->print_cr("b) other problem");
 515   }
 516 #endif // PRODUCT
 517 
 518   ShouldNotReachHere();
 519   return NULL;
 520 }
 521 
 522 
 523 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 524   return raw_exception_handler_for_return_address(thread, return_address);
 525 JRT_END
 526 
 527 
 528 address SharedRuntime::get_poll_stub(address pc) {
 529   address stub;
 530   // Look up the code blob
 531   CodeBlob *cb = CodeCache::find_blob(pc);
 532 
 533   // Should be an nmethod
 534   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 535 
 536   // Look up the relocation information
 537   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 538     "safepoint polling: type must be poll");
 539 
 540 #ifdef ASSERT
 541   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 542     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 543     Disassembler::decode(cb);
 544     fatal("Only polling locations are used for safepoint");
 545   }
 546 #endif
 547 
 548   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 549   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 550   if (at_poll_return) {
 551     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 552            "polling page return stub not created yet");
 553     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 554   } else if (has_wide_vectors) {
 555     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 556            "polling page vectors safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 558   } else {
 559     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 560            "polling page safepoint stub not created yet");
 561     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 562   }
 563   log_debug(safepoint)("... found polling page %s exception at pc = "
 564                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 565                        at_poll_return ? "return" : "loop",
 566                        (intptr_t)pc, (intptr_t)stub);
 567   return stub;
 568 }
 569 
 570 
 571 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 572   assert(caller.is_interpreted_frame(), "");
 573   int args_size = ArgumentSizeComputer(sig).size() + 1;
 574   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 575   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 576   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 577   return result;
 578 }
 579 
 580 
 581 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 582   if (JvmtiExport::can_post_on_exceptions()) {
 583     vframeStream vfst(thread, true);
 584     methodHandle method = methodHandle(thread, vfst.method());
 585     address bcp = method()->bcp_from(vfst.bci());
 586     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 587   }
 588   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 589 }
 590 
 591 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 592   Handle h_exception = Exceptions::new_exception(thread, name, message);
 593   throw_and_post_jvmti_exception(thread, h_exception);
 594 }
 595 
 596 // The interpreter code to call this tracing function is only
 597 // called/generated when UL is on for redefine, class and has the right level
 598 // and tags. Since obsolete methods are never compiled, we don't have
 599 // to modify the compilers to generate calls to this function.
 600 //
 601 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 602     JavaThread* thread, Method* method))
 603   if (method->is_obsolete()) {
 604     // We are calling an obsolete method, but this is not necessarily
 605     // an error. Our method could have been redefined just after we
 606     // fetched the Method* from the constant pool.
 607     ResourceMark rm;
 608     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 609   }
 610   return 0;
 611 JRT_END
 612 
 613 // ret_pc points into caller; we are returning caller's exception handler
 614 // for given exception
 615 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 616                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 617   assert(cm != NULL, "must exist");
 618   ResourceMark rm;
 619 
 620 #if INCLUDE_JVMCI
 621   if (cm->is_compiled_by_jvmci()) {
 622     // lookup exception handler for this pc
 623     int catch_pco = ret_pc - cm->code_begin();
 624     ExceptionHandlerTable table(cm);
 625     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 626     if (t != NULL) {
 627       return cm->code_begin() + t->pco();
 628     } else {
 629       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 630     }
 631   }
 632 #endif // INCLUDE_JVMCI
 633 
 634   nmethod* nm = cm->as_nmethod();
 635   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 636   // determine handler bci, if any
 637   EXCEPTION_MARK;
 638 
 639   int handler_bci = -1;
 640   int scope_depth = 0;
 641   if (!force_unwind) {
 642     int bci = sd->bci();
 643     bool recursive_exception = false;
 644     do {
 645       bool skip_scope_increment = false;
 646       // exception handler lookup
 647       Klass* ek = exception->klass();
 648       methodHandle mh(THREAD, sd->method());
 649       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 650       if (HAS_PENDING_EXCEPTION) {
 651         recursive_exception = true;
 652         // We threw an exception while trying to find the exception handler.
 653         // Transfer the new exception to the exception handle which will
 654         // be set into thread local storage, and do another lookup for an
 655         // exception handler for this exception, this time starting at the
 656         // BCI of the exception handler which caused the exception to be
 657         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 658         // argument to ensure that the correct exception is thrown (4870175).
 659         recursive_exception_occurred = true;
 660         exception = Handle(THREAD, PENDING_EXCEPTION);
 661         CLEAR_PENDING_EXCEPTION;
 662         if (handler_bci >= 0) {
 663           bci = handler_bci;
 664           handler_bci = -1;
 665           skip_scope_increment = true;
 666         }
 667       }
 668       else {
 669         recursive_exception = false;
 670       }
 671       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 672         sd = sd->sender();
 673         if (sd != NULL) {
 674           bci = sd->bci();
 675         }
 676         ++scope_depth;
 677       }
 678     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 679   }
 680 
 681   // found handling method => lookup exception handler
 682   int catch_pco = ret_pc - nm->code_begin();
 683 
 684   ExceptionHandlerTable table(nm);
 685   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 686   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 687     // Allow abbreviated catch tables.  The idea is to allow a method
 688     // to materialize its exceptions without committing to the exact
 689     // routing of exceptions.  In particular this is needed for adding
 690     // a synthetic handler to unlock monitors when inlining
 691     // synchronized methods since the unlock path isn't represented in
 692     // the bytecodes.
 693     t = table.entry_for(catch_pco, -1, 0);
 694   }
 695 
 696 #ifdef COMPILER1
 697   if (t == NULL && nm->is_compiled_by_c1()) {
 698     assert(nm->unwind_handler_begin() != NULL, "");
 699     return nm->unwind_handler_begin();
 700   }
 701 #endif
 702 
 703   if (t == NULL) {
 704     ttyLocker ttyl;
 705     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 706     tty->print_cr("   Exception:");
 707     exception->print();
 708     tty->cr();
 709     tty->print_cr(" Compiled exception table :");
 710     table.print();
 711     nm->print_code();
 712     guarantee(false, "missing exception handler");
 713     return NULL;
 714   }
 715 
 716   return nm->code_begin() + t->pco();
 717 }
 718 
 719 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 720   // These errors occur only at call sites
 721   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 722 JRT_END
 723 
 724 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 725   // These errors occur only at call sites
 726   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 727 JRT_END
 728 
 729 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 731 JRT_END
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 734   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 735 JRT_END
 736 
 737 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 738   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 739   // cache sites (when the callee activation is not yet set up) so we are at a call site
 740   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 741 JRT_END
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 744   throw_StackOverflowError_common(thread, false);
 745 JRT_END
 746 
 747 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 748   throw_StackOverflowError_common(thread, true);
 749 JRT_END
 750 
 751 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 752   // We avoid using the normal exception construction in this case because
 753   // it performs an upcall to Java, and we're already out of stack space.
 754   Thread* THREAD = thread;
 755   Klass* k = SystemDictionary::StackOverflowError_klass();
 756   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 757   if (delayed) {
 758     java_lang_Throwable::set_message(exception_oop,
 759                                      Universe::delayed_stack_overflow_error_message());
 760   }
 761   Handle exception (thread, exception_oop);
 762   if (StackTraceInThrowable) {
 763     java_lang_Throwable::fill_in_stack_trace(exception);
 764   }
 765   // Increment counter for hs_err file reporting
 766   Atomic::inc(&Exceptions::_stack_overflow_errors);
 767   throw_and_post_jvmti_exception(thread, exception);
 768 }
 769 
 770 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 771                                                            address pc,
 772                                                            ImplicitExceptionKind exception_kind)
 773 {
 774   address target_pc = NULL;
 775 
 776   if (Interpreter::contains(pc)) {
 777 #ifdef CC_INTERP
 778     // C++ interpreter doesn't throw implicit exceptions
 779     ShouldNotReachHere();
 780 #else
 781     switch (exception_kind) {
 782       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 783       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 784       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 785       default:                      ShouldNotReachHere();
 786     }
 787 #endif // !CC_INTERP
 788   } else {
 789     switch (exception_kind) {
 790       case STACK_OVERFLOW: {
 791         // Stack overflow only occurs upon frame setup; the callee is
 792         // going to be unwound. Dispatch to a shared runtime stub
 793         // which will cause the StackOverflowError to be fabricated
 794         // and processed.
 795         // Stack overflow should never occur during deoptimization:
 796         // the compiled method bangs the stack by as much as the
 797         // interpreter would need in case of a deoptimization. The
 798         // deoptimization blob and uncommon trap blob bang the stack
 799         // in a debug VM to verify the correctness of the compiled
 800         // method stack banging.
 801         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 802         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 803         return StubRoutines::throw_StackOverflowError_entry();
 804       }
 805 
 806       case IMPLICIT_NULL: {
 807         if (VtableStubs::contains(pc)) {
 808           // We haven't yet entered the callee frame. Fabricate an
 809           // exception and begin dispatching it in the caller. Since
 810           // the caller was at a call site, it's safe to destroy all
 811           // caller-saved registers, as these entry points do.
 812           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 813 
 814           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 815           if (vt_stub == NULL) return NULL;
 816 
 817           if (vt_stub->is_abstract_method_error(pc)) {
 818             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 819             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 820             // Instead of throwing the abstract method error here directly, we re-resolve
 821             // and will throw the AbstractMethodError during resolve. As a result, we'll
 822             // get a more detailed error message.
 823             return SharedRuntime::get_handle_wrong_method_stub();
 824           } else {
 825             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 826             // Assert that the signal comes from the expected location in stub code.
 827             assert(vt_stub->is_null_pointer_exception(pc),
 828                    "obtained signal from unexpected location in stub code");
 829             return StubRoutines::throw_NullPointerException_at_call_entry();
 830           }
 831         } else {
 832           CodeBlob* cb = CodeCache::find_blob(pc);
 833 
 834           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 835           if (cb == NULL) return NULL;
 836 
 837           // Exception happened in CodeCache. Must be either:
 838           // 1. Inline-cache check in C2I handler blob,
 839           // 2. Inline-cache check in nmethod, or
 840           // 3. Implicit null exception in nmethod
 841 
 842           if (!cb->is_compiled()) {
 843             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 844             if (!is_in_blob) {
 845               // Allow normal crash reporting to handle this
 846               return NULL;
 847             }
 848             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 849             // There is no handler here, so we will simply unwind.
 850             return StubRoutines::throw_NullPointerException_at_call_entry();
 851           }
 852 
 853           // Otherwise, it's a compiled method.  Consult its exception handlers.
 854           CompiledMethod* cm = (CompiledMethod*)cb;
 855           if (cm->inlinecache_check_contains(pc)) {
 856             // exception happened inside inline-cache check code
 857             // => the nmethod is not yet active (i.e., the frame
 858             // is not set up yet) => use return address pushed by
 859             // caller => don't push another return address
 860             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 861             return StubRoutines::throw_NullPointerException_at_call_entry();
 862           }
 863 
 864           if (cm->method()->is_method_handle_intrinsic()) {
 865             // exception happened inside MH dispatch code, similar to a vtable stub
 866             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 867             return StubRoutines::throw_NullPointerException_at_call_entry();
 868           }
 869 
 870 #ifndef PRODUCT
 871           _implicit_null_throws++;
 872 #endif
 873           target_pc = cm->continuation_for_implicit_null_exception(pc);
 874           // If there's an unexpected fault, target_pc might be NULL,
 875           // in which case we want to fall through into the normal
 876           // error handling code.
 877         }
 878 
 879         break; // fall through
 880       }
 881 
 882 
 883       case IMPLICIT_DIVIDE_BY_ZERO: {
 884         CompiledMethod* cm = CodeCache::find_compiled(pc);
 885         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 886 #ifndef PRODUCT
 887         _implicit_div0_throws++;
 888 #endif
 889         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 890         // If there's an unexpected fault, target_pc might be NULL,
 891         // in which case we want to fall through into the normal
 892         // error handling code.
 893         break; // fall through
 894       }
 895 
 896       default: ShouldNotReachHere();
 897     }
 898 
 899     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 900 
 901     if (exception_kind == IMPLICIT_NULL) {
 902 #ifndef PRODUCT
 903       // for AbortVMOnException flag
 904       Exceptions::debug_check_abort("java.lang.NullPointerException");
 905 #endif //PRODUCT
 906       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 907     } else {
 908 #ifndef PRODUCT
 909       // for AbortVMOnException flag
 910       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 911 #endif //PRODUCT
 912       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 913     }
 914     return target_pc;
 915   }
 916 
 917   ShouldNotReachHere();
 918   return NULL;
 919 }
 920 
 921 
 922 /**
 923  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 924  * installed in the native function entry of all native Java methods before
 925  * they get linked to their actual native methods.
 926  *
 927  * \note
 928  * This method actually never gets called!  The reason is because
 929  * the interpreter's native entries call NativeLookup::lookup() which
 930  * throws the exception when the lookup fails.  The exception is then
 931  * caught and forwarded on the return from NativeLookup::lookup() call
 932  * before the call to the native function.  This might change in the future.
 933  */
 934 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 935 {
 936   // We return a bad value here to make sure that the exception is
 937   // forwarded before we look at the return value.
 938   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 939 }
 940 JNI_END
 941 
 942 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 943   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 944 }
 945 
 946 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 947 #if INCLUDE_JVMCI
 948   if (!obj->klass()->has_finalizer()) {
 949     return;
 950   }
 951 #endif // INCLUDE_JVMCI
 952   assert(oopDesc::is_oop(obj), "must be a valid oop");
 953   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 954   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 955 JRT_END
 956 
 957 
 958 jlong SharedRuntime::get_java_tid(Thread* thread) {
 959   if (thread != NULL) {
 960     if (thread->is_Java_thread()) {
 961       oop obj = ((JavaThread*)thread)->threadObj();
 962       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 963     }
 964   }
 965   return 0;
 966 }
 967 
 968 /**
 969  * This function ought to be a void function, but cannot be because
 970  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 971  * 6254741.  Once that is fixed we can remove the dummy return value.
 972  */
 973 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 974   return dtrace_object_alloc_base(Thread::current(), o, size);
 975 }
 976 
 977 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 978   assert(DTraceAllocProbes, "wrong call");
 979   Klass* klass = o->klass();
 980   Symbol* name = klass->name();
 981   HOTSPOT_OBJECT_ALLOC(
 982                    get_java_tid(thread),
 983                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 984   return 0;
 985 }
 986 
 987 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 988     JavaThread* thread, Method* method))
 989   assert(DTraceMethodProbes, "wrong call");
 990   Symbol* kname = method->klass_name();
 991   Symbol* name = method->name();
 992   Symbol* sig = method->signature();
 993   HOTSPOT_METHOD_ENTRY(
 994       get_java_tid(thread),
 995       (char *) kname->bytes(), kname->utf8_length(),
 996       (char *) name->bytes(), name->utf8_length(),
 997       (char *) sig->bytes(), sig->utf8_length());
 998   return 0;
 999 JRT_END
1000 
1001 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1002     JavaThread* thread, Method* method))
1003   assert(DTraceMethodProbes, "wrong call");
1004   Symbol* kname = method->klass_name();
1005   Symbol* name = method->name();
1006   Symbol* sig = method->signature();
1007   HOTSPOT_METHOD_RETURN(
1008       get_java_tid(thread),
1009       (char *) kname->bytes(), kname->utf8_length(),
1010       (char *) name->bytes(), name->utf8_length(),
1011       (char *) sig->bytes(), sig->utf8_length());
1012   return 0;
1013 JRT_END
1014 
1015 #if INCLUDE_TSAN
1016 
1017 JRT_LEAF(void, SharedRuntime::verify_oop_index(oopDesc* obj, int index))
1018   assert(oopDesc::is_oop(obj), "invalid oop");
1019   assert(index >= 0, "index is less than 0");
1020   int obj_size_in_bytes = obj->size() * HeapWordSize;
1021   assert(index < obj_size_in_bytes, "index %d >= obj size %d", index, obj_size_in_bytes);
1022 JRT_END
1023 
1024 // TSAN: method entry callback from interpreter
1025 // (1) In order to have the line numbers in the call stack, we use the caller
1026 //     address instead of the method that's being called. This also matches
1027 //     the entry/exit convention that TSAN uses for C++.
1028 // We use JRT_ENTRY since call_VM_leaf doesn't set _last_Java_sp that we need.
1029 JRT_ENTRY(void, SharedRuntime::tsan_interp_method_entry(JavaThread *thread))
1030   DEBUG_ONLY(NoSafepointVerifier nsv;)
1031   DEBUG_ONLY(NoHandleMark nhm;)
1032   assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1033 
1034   RegisterMap unused_reg_map(thread, false);
1035 
1036   // These asserts should be removed once
1037   // we support more than just the interpreter for TSAN.
1038   assert(!thread->last_frame().is_compiled_frame(),
1039          "Current frame should not be a compiled frame");
1040   const frame sender = thread->last_frame().real_sender(&unused_reg_map);
1041   assert(!sender.is_compiled_frame(), "Sender should not be a compiled frame");
1042 
1043   jmethodID jmethod_id = 0;
1044   u2 bci = 0;
1045   // TODO: is (0, 0) really the best we can do
1046   // when the sender isn't an interpreted frame?
1047   if (sender.is_interpreted_frame()) {
1048     jmethod_id = sender.interpreter_frame_method()->find_jmethod_id_or_null();
1049     bci = sender.interpreter_frame_bci();
1050   }
1051   __tsan_func_entry(tsan_code_location(jmethod_id, bci));
1052 JRT_END
1053 
1054 // TSAN: method exit callback from interpreter
1055 JRT_LEAF(void, SharedRuntime::tsan_interp_method_exit())
1056   assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1057   __tsan_func_exit();
1058 JRT_END
1059 
1060 void SharedRuntime::tsan_oop_lock(Thread* thread, oop obj) {
1061   DEBUG_ONLY(NoSafepointVerifier nsv;)
1062   assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1063   assert(thread != NULL, "null thread");
1064   assert(obj != NULL, "null oop");
1065   assert(oopDesc::is_oop(obj), "invalid oop");
1066 
1067   TsanOopMap::add_oop(obj);
1068   __tsan_java_mutex_lock((julong)(oopDesc*)obj);
1069 }
1070 
1071 void SharedRuntime::tsan_oop_unlock(Thread *thread, oop obj) {
1072   DEBUG_ONLY(NoSafepointVerifier nsv;)
1073   assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1074   assert(thread != NULL, "null thread");
1075   assert(obj != NULL, "null oop");
1076   assert(oopDesc::is_oop(obj), "invalid oop");
1077   assert(TsanOopMap::exists(obj), "oop seen in unlock but not tracked");
1078 
1079   __tsan_java_mutex_unlock((julong)(oopDesc*)obj);
1080 }
1081 
1082 void SharedRuntime::tsan_oop_rec_lock(Thread* thread, oop obj, int rec) {
1083   DEBUG_ONLY(NoSafepointVerifier nsv;)
1084   assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1085   assert(thread != NULL, "null thread");
1086   assert(obj != NULL, "null oop");
1087   assert(oopDesc::is_oop(obj), "invalid oop");
1088 
1089   TsanOopMap::add_oop(obj);
1090   __tsan_java_mutex_lock_rec((julong)(oopDesc*)obj, rec);
1091 }
1092 
1093 int SharedRuntime::tsan_oop_rec_unlock(Thread *thread, oop obj) {
1094   DEBUG_ONLY(NoSafepointVerifier nsv;)
1095   assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1096   assert(thread != NULL, "null thread");
1097   assert(obj != NULL, "null oop");
1098   assert(oopDesc::is_oop(obj), "invalid oop");
1099   assert(TsanOopMap::exists(obj), "oop seen in unlock but not tracked");
1100 
1101   return __tsan_java_mutex_unlock_rec((julong)(oopDesc*)obj);
1102 }
1103 
1104 JRT_LEAF(void, SharedRuntime::tsan_interp_lock(JavaThread* thread,
1105                                                BasicObjectLock* elem))
1106   DEBUG_ONLY(thread->last_frame().interpreter_frame_verify_monitor(elem);)
1107   assert(elem != NULL, "null elem");
1108 
1109   oop obj = elem->obj();
1110   tsan_oop_lock(thread, obj);
1111 
1112   assert(obj == elem->obj(), "oop changed");
1113   DEBUG_ONLY(thread->last_frame().interpreter_frame_verify_monitor(elem);)
1114 JRT_END
1115 
1116 JRT_LEAF(void, SharedRuntime::tsan_interp_unlock(JavaThread* thread,
1117                                                  BasicObjectLock* elem))
1118   DEBUG_ONLY(thread->last_frame().interpreter_frame_verify_monitor(elem);)
1119   assert(elem != NULL, "null elem");
1120 
1121   oop obj = elem->obj();
1122   tsan_oop_unlock(thread, obj);
1123 
1124   assert(obj == elem->obj(), "oop changed");
1125   DEBUG_ONLY(thread->last_frame().interpreter_frame_verify_monitor(elem);)
1126 JRT_END
1127 
1128 // Should be JRT_LEAF, but this is called very early during VM startup, so we
1129 // are sometimes in '_thread_in_vm' state.
1130 // NOTE: DO NOT add operations that can safepoint, enter GC, or throw an
1131 // exception!
1132 void SharedRuntime::tsan_track_obj_with_size(oopDesc* obj, int size) {
1133   assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1134   assert(oopDesc::is_oop(obj), "Bad oopDesc passed to tsan_track_obj_with_size().");
1135   TsanOopMap::add_oop_with_size(obj, size);
1136 }
1137 
1138 JRT_LEAF(void, SharedRuntime::tsan_track_obj(oopDesc* obj))
1139   assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1140   assert(oopDesc::is_oop(obj), "Bad oopDesc passed to tsan_track_obj().");
1141   TsanOopMap::add_oop(obj);
1142 JRT_END
1143 
1144 // TODO: Make tsan_acquire/release JRT_LEAF
1145 // Currently it can't be JRT_LEAF because there are calls from the VM
1146 // (instanceKlass.cpp), and JRT_LEAF only allows calls from Java/native code.
1147 // We need to figure out a better way of being able to call TSAN functions from
1148 // the VM.
1149 void SharedRuntime::tsan_acquire(void* address) {
1150   DEBUG_ONLY(NoSafepointVerifier nsv;)
1151   assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1152   assert(address != NULL, "Cannot acquire at address 0");
1153   __tsan_java_acquire(address);
1154 }
1155 
1156 void SharedRuntime::tsan_release(void* address) {
1157   DEBUG_ONLY(NoSafepointVerifier nsv;)
1158   assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");
1159   assert(address != NULL, "Cannot release at address 0");
1160   __tsan_java_release(address);
1161 }
1162 
1163 #define TSAN_MEMORY_ACCESS(name)                                               \
1164   JRT_LEAF(void, SharedRuntime::tsan_##name(                                   \
1165       void* addr,                                                              \
1166       Method* method,                                                          \
1167       address bcp))                                                            \
1168     assert(ThreadSanitizer, "Need -XX:+ThreadSanitizer");                      \
1169     assert(ThreadSanitizerJavaMemory, "Need -XX:+ThreadSanitizerJavaMemory");  \
1170     jmethodID mid = method->find_jmethod_id_or_null();                         \
1171     int bci = method->bci_from(bcp);                                           \
1172     __tsan_##name##_pc(addr, tsan_code_location(mid, bci));                    \
1173   JRT_END
1174 
1175 TSAN_MEMORY_ACCESS(read1)
1176 TSAN_MEMORY_ACCESS(read2)
1177 TSAN_MEMORY_ACCESS(read4)
1178 TSAN_MEMORY_ACCESS(read8)
1179 TSAN_MEMORY_ACCESS(write1)
1180 TSAN_MEMORY_ACCESS(write2)
1181 TSAN_MEMORY_ACCESS(write4)
1182 TSAN_MEMORY_ACCESS(write8)
1183 
1184 #endif // INCLUDE_TSAN
1185 
1186 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1187 // for a call current in progress, i.e., arguments has been pushed on stack
1188 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1189 // vtable updates, etc.  Caller frame must be compiled.
1190 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1191   ResourceMark rm(THREAD);
1192 
1193   // last java frame on stack (which includes native call frames)
1194   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1195 
1196   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1197 }
1198 
1199 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1200   CompiledMethod* caller = vfst.nm();
1201 
1202   nmethodLocker caller_lock(caller);
1203 
1204   address pc = vfst.frame_pc();
1205   { // Get call instruction under lock because another thread may be busy patching it.
1206     CompiledICLocker ic_locker(caller);
1207     return caller->attached_method_before_pc(pc);
1208   }
1209   return NULL;
1210 }
1211 
1212 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1213 // for a call current in progress, i.e., arguments has been pushed on stack
1214 // but callee has not been invoked yet.  Caller frame must be compiled.
1215 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1216                                               vframeStream& vfst,
1217                                               Bytecodes::Code& bc,
1218                                               CallInfo& callinfo, TRAPS) {
1219   Handle receiver;
1220   Handle nullHandle;  //create a handy null handle for exception returns
1221 
1222   assert(!vfst.at_end(), "Java frame must exist");
1223 
1224   // Find caller and bci from vframe
1225   methodHandle caller(THREAD, vfst.method());
1226   int          bci   = vfst.bci();
1227 
1228   Bytecode_invoke bytecode(caller, bci);
1229   int bytecode_index = bytecode.index();
1230   bc = bytecode.invoke_code();
1231 
1232   methodHandle attached_method(THREAD, extract_attached_method(vfst));
1233   if (attached_method.not_null()) {
1234     Method* callee = bytecode.static_target(CHECK_NH);
1235     vmIntrinsics::ID id = callee->intrinsic_id();
1236     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1237     // it attaches statically resolved method to the call site.
1238     if (MethodHandles::is_signature_polymorphic(id) &&
1239         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1240       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1241 
1242       // Adjust invocation mode according to the attached method.
1243       switch (bc) {
1244         case Bytecodes::_invokevirtual:
1245           if (attached_method->method_holder()->is_interface()) {
1246             bc = Bytecodes::_invokeinterface;
1247           }
1248           break;
1249         case Bytecodes::_invokeinterface:
1250           if (!attached_method->method_holder()->is_interface()) {
1251             bc = Bytecodes::_invokevirtual;
1252           }
1253           break;
1254         case Bytecodes::_invokehandle:
1255           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1256             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1257                                               : Bytecodes::_invokevirtual;
1258           }
1259           break;
1260         default:
1261           break;
1262       }
1263     }
1264   }
1265 
1266   assert(bc != Bytecodes::_illegal, "not initialized");
1267 
1268   bool has_receiver = bc != Bytecodes::_invokestatic &&
1269                       bc != Bytecodes::_invokedynamic &&
1270                       bc != Bytecodes::_invokehandle;
1271 
1272   // Find receiver for non-static call
1273   if (has_receiver) {
1274     // This register map must be update since we need to find the receiver for
1275     // compiled frames. The receiver might be in a register.
1276     RegisterMap reg_map2(thread);
1277     frame stubFrame   = thread->last_frame();
1278     // Caller-frame is a compiled frame
1279     frame callerFrame = stubFrame.sender(&reg_map2);
1280 
1281     if (attached_method.is_null()) {
1282       Method* callee = bytecode.static_target(CHECK_NH);
1283       if (callee == NULL) {
1284         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1285       }
1286     }
1287 
1288     // Retrieve from a compiled argument list
1289     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1290 
1291     if (receiver.is_null()) {
1292       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1293     }
1294   }
1295 
1296   // Resolve method
1297   if (attached_method.not_null()) {
1298     // Parameterized by attached method.
1299     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1300   } else {
1301     // Parameterized by bytecode.
1302     constantPoolHandle constants(THREAD, caller->constants());
1303     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1304   }
1305 
1306 #ifdef ASSERT
1307   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1308   if (has_receiver) {
1309     assert(receiver.not_null(), "should have thrown exception");
1310     Klass* receiver_klass = receiver->klass();
1311     Klass* rk = NULL;
1312     if (attached_method.not_null()) {
1313       // In case there's resolved method attached, use its holder during the check.
1314       rk = attached_method->method_holder();
1315     } else {
1316       // Klass is already loaded.
1317       constantPoolHandle constants(THREAD, caller->constants());
1318       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1319     }
1320     Klass* static_receiver_klass = rk;
1321     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1322            "actual receiver must be subclass of static receiver klass");
1323     if (receiver_klass->is_instance_klass()) {
1324       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1325         tty->print_cr("ERROR: Klass not yet initialized!!");
1326         receiver_klass->print();
1327       }
1328       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1329     }
1330   }
1331 #endif
1332 
1333   return receiver;
1334 }
1335 
1336 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1337   ResourceMark rm(THREAD);
1338   // We need first to check if any Java activations (compiled, interpreted)
1339   // exist on the stack since last JavaCall.  If not, we need
1340   // to get the target method from the JavaCall wrapper.
1341   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1342   methodHandle callee_method;
1343   if (vfst.at_end()) {
1344     // No Java frames were found on stack since we did the JavaCall.
1345     // Hence the stack can only contain an entry_frame.  We need to
1346     // find the target method from the stub frame.
1347     RegisterMap reg_map(thread, false);
1348     frame fr = thread->last_frame();
1349     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1350     fr = fr.sender(&reg_map);
1351     assert(fr.is_entry_frame(), "must be");
1352     // fr is now pointing to the entry frame.
1353     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1354   } else {
1355     Bytecodes::Code bc;
1356     CallInfo callinfo;
1357     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1358     callee_method = methodHandle(THREAD, callinfo.selected_method());
1359   }
1360   assert(callee_method()->is_method(), "must be");
1361   return callee_method;
1362 }
1363 
1364 // Resolves a call.
1365 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1366                                            bool is_virtual,
1367                                            bool is_optimized, TRAPS) {
1368   methodHandle callee_method;
1369   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1370   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1371     int retry_count = 0;
1372     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1373            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1374       // If has a pending exception then there is no need to re-try to
1375       // resolve this method.
1376       // If the method has been redefined, we need to try again.
1377       // Hack: we have no way to update the vtables of arrays, so don't
1378       // require that java.lang.Object has been updated.
1379 
1380       // It is very unlikely that method is redefined more than 100 times
1381       // in the middle of resolve. If it is looping here more than 100 times
1382       // means then there could be a bug here.
1383       guarantee((retry_count++ < 100),
1384                 "Could not resolve to latest version of redefined method");
1385       // method is redefined in the middle of resolve so re-try.
1386       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1387     }
1388   }
1389   return callee_method;
1390 }
1391 
1392 // This fails if resolution required refilling of IC stubs
1393 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1394                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1395                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1396   StaticCallInfo static_call_info;
1397   CompiledICInfo virtual_call_info;
1398 
1399   // Make sure the callee nmethod does not get deoptimized and removed before
1400   // we are done patching the code.
1401   CompiledMethod* callee = callee_method->code();
1402 
1403   if (callee != NULL) {
1404     assert(callee->is_compiled(), "must be nmethod for patching");
1405   }
1406 
1407   if (callee != NULL && !callee->is_in_use()) {
1408     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1409     callee = NULL;
1410   }
1411   nmethodLocker nl_callee(callee);
1412 #ifdef ASSERT
1413   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1414 #endif
1415 
1416   bool is_nmethod = caller_nm->is_nmethod();
1417 
1418   if (is_virtual) {
1419     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1420     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1421     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1422     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1423                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1424                      CHECK_false);
1425   } else {
1426     // static call
1427     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1428   }
1429 
1430   // grab lock, check for deoptimization and potentially patch caller
1431   {
1432     CompiledICLocker ml(caller_nm);
1433 
1434     // Lock blocks for safepoint during which both nmethods can change state.
1435 
1436     // Now that we are ready to patch if the Method* was redefined then
1437     // don't update call site and let the caller retry.
1438     // Don't update call site if callee nmethod was unloaded or deoptimized.
1439     // Don't update call site if callee nmethod was replaced by an other nmethod
1440     // which may happen when multiply alive nmethod (tiered compilation)
1441     // will be supported.
1442     if (!callee_method->is_old() &&
1443         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1444       NoSafepointVerifier nsv;
1445 #ifdef ASSERT
1446       // We must not try to patch to jump to an already unloaded method.
1447       if (dest_entry_point != 0) {
1448         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1449         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1450                "should not call unloaded nmethod");
1451       }
1452 #endif
1453       if (is_virtual) {
1454         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1455         if (inline_cache->is_clean()) {
1456           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1457             return false;
1458           }
1459         }
1460       } else {
1461         if (VM_Version::supports_fast_class_init_checks() &&
1462             invoke_code == Bytecodes::_invokestatic &&
1463             callee_method->needs_clinit_barrier() &&
1464             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1465           return true; // skip patching for JVMCI or AOT code
1466         }
1467         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1468         if (ssc->is_clean()) ssc->set(static_call_info);
1469       }
1470     }
1471   } // unlock CompiledICLocker
1472   return true;
1473 }
1474 
1475 // Resolves a call.  The compilers generate code for calls that go here
1476 // and are patched with the real destination of the call.
1477 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1478                                                bool is_virtual,
1479                                                bool is_optimized, TRAPS) {
1480 
1481   ResourceMark rm(thread);
1482   RegisterMap cbl_map(thread, false);
1483   frame caller_frame = thread->last_frame().sender(&cbl_map);
1484 
1485   CodeBlob* caller_cb = caller_frame.cb();
1486   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1487   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1488 
1489   // make sure caller is not getting deoptimized
1490   // and removed before we are done with it.
1491   // CLEANUP - with lazy deopt shouldn't need this lock
1492   nmethodLocker caller_lock(caller_nm);
1493 
1494   // determine call info & receiver
1495   // note: a) receiver is NULL for static calls
1496   //       b) an exception is thrown if receiver is NULL for non-static calls
1497   CallInfo call_info;
1498   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1499   Handle receiver = find_callee_info(thread, invoke_code,
1500                                      call_info, CHECK_(methodHandle()));
1501   methodHandle callee_method(THREAD, call_info.selected_method());
1502 
1503   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1504          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1505          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1506          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1507          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1508 
1509   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1510 
1511 #ifndef PRODUCT
1512   // tracing/debugging/statistics
1513   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1514                 (is_virtual) ? (&_resolve_virtual_ctr) :
1515                                (&_resolve_static_ctr);
1516   Atomic::inc(addr);
1517 
1518   if (TraceCallFixup) {
1519     ResourceMark rm(thread);
1520     tty->print("resolving %s%s (%s) call to",
1521       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1522       Bytecodes::name(invoke_code));
1523     callee_method->print_short_name(tty);
1524     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1525                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1526   }
1527 #endif
1528 
1529   if (invoke_code == Bytecodes::_invokestatic) {
1530     assert(callee_method->method_holder()->is_initialized() ||
1531            callee_method->method_holder()->is_reentrant_initialization(thread),
1532            "invalid class initialization state for invoke_static");
1533     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1534       // In order to keep class initialization check, do not patch call
1535       // site for static call when the class is not fully initialized.
1536       // Proper check is enforced by call site re-resolution on every invocation.
1537       //
1538       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1539       // explicit class initialization check is put in nmethod entry (VEP).
1540       assert(callee_method->method_holder()->is_linked(), "must be");
1541       return callee_method;
1542     }
1543   }
1544 
1545   // JSR 292 key invariant:
1546   // If the resolved method is a MethodHandle invoke target, the call
1547   // site must be a MethodHandle call site, because the lambda form might tail-call
1548   // leaving the stack in a state unknown to either caller or callee
1549   // TODO detune for now but we might need it again
1550 //  assert(!callee_method->is_compiled_lambda_form() ||
1551 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1552 
1553   // Compute entry points. This might require generation of C2I converter
1554   // frames, so we cannot be holding any locks here. Furthermore, the
1555   // computation of the entry points is independent of patching the call.  We
1556   // always return the entry-point, but we only patch the stub if the call has
1557   // not been deoptimized.  Return values: For a virtual call this is an
1558   // (cached_oop, destination address) pair. For a static call/optimized
1559   // virtual this is just a destination address.
1560 
1561   // Patching IC caches may fail if we run out if transition stubs.
1562   // We refill the ic stubs then and try again.
1563   for (;;) {
1564     ICRefillVerifier ic_refill_verifier;
1565     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1566                                                   is_virtual, is_optimized, receiver,
1567                                                   call_info, invoke_code, CHECK_(methodHandle()));
1568     if (successful) {
1569       return callee_method;
1570     } else {
1571       InlineCacheBuffer::refill_ic_stubs();
1572     }
1573   }
1574 
1575 }
1576 
1577 
1578 // Inline caches exist only in compiled code
1579 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1580 #ifdef ASSERT
1581   RegisterMap reg_map(thread, false);
1582   frame stub_frame = thread->last_frame();
1583   assert(stub_frame.is_runtime_frame(), "sanity check");
1584   frame caller_frame = stub_frame.sender(&reg_map);
1585   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1586 #endif /* ASSERT */
1587 
1588   methodHandle callee_method;
1589   JRT_BLOCK
1590     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1591     // Return Method* through TLS
1592     thread->set_vm_result_2(callee_method());
1593   JRT_BLOCK_END
1594   // return compiled code entry point after potential safepoints
1595   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1596   return callee_method->verified_code_entry();
1597 JRT_END
1598 
1599 
1600 // Handle call site that has been made non-entrant
1601 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1602   // 6243940 We might end up in here if the callee is deoptimized
1603   // as we race to call it.  We don't want to take a safepoint if
1604   // the caller was interpreted because the caller frame will look
1605   // interpreted to the stack walkers and arguments are now
1606   // "compiled" so it is much better to make this transition
1607   // invisible to the stack walking code. The i2c path will
1608   // place the callee method in the callee_target. It is stashed
1609   // there because if we try and find the callee by normal means a
1610   // safepoint is possible and have trouble gc'ing the compiled args.
1611   RegisterMap reg_map(thread, false);
1612   frame stub_frame = thread->last_frame();
1613   assert(stub_frame.is_runtime_frame(), "sanity check");
1614   frame caller_frame = stub_frame.sender(&reg_map);
1615 
1616   if (caller_frame.is_interpreted_frame() ||
1617       caller_frame.is_entry_frame()) {
1618     Method* callee = thread->callee_target();
1619     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1620     thread->set_vm_result_2(callee);
1621     thread->set_callee_target(NULL);
1622     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1623       // Bypass class initialization checks in c2i when caller is in native.
1624       // JNI calls to static methods don't have class initialization checks.
1625       // Fast class initialization checks are present in c2i adapters and call into
1626       // SharedRuntime::handle_wrong_method() on the slow path.
1627       //
1628       // JVM upcalls may land here as well, but there's a proper check present in
1629       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1630       // so bypassing it in c2i adapter is benign.
1631       return callee->get_c2i_no_clinit_check_entry();
1632     } else {
1633       return callee->get_c2i_entry();
1634     }
1635   }
1636 
1637   // Must be compiled to compiled path which is safe to stackwalk
1638   methodHandle callee_method;
1639   JRT_BLOCK
1640     // Force resolving of caller (if we called from compiled frame)
1641     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1642     thread->set_vm_result_2(callee_method());
1643   JRT_BLOCK_END
1644   // return compiled code entry point after potential safepoints
1645   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1646   return callee_method->verified_code_entry();
1647 JRT_END
1648 
1649 // Handle abstract method call
1650 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1651   // Verbose error message for AbstractMethodError.
1652   // Get the called method from the invoke bytecode.
1653   vframeStream vfst(thread, true);
1654   assert(!vfst.at_end(), "Java frame must exist");
1655   methodHandle caller(thread, vfst.method());
1656   Bytecode_invoke invoke(caller, vfst.bci());
1657   DEBUG_ONLY( invoke.verify(); )
1658 
1659   // Find the compiled caller frame.
1660   RegisterMap reg_map(thread);
1661   frame stubFrame = thread->last_frame();
1662   assert(stubFrame.is_runtime_frame(), "must be");
1663   frame callerFrame = stubFrame.sender(&reg_map);
1664   assert(callerFrame.is_compiled_frame(), "must be");
1665 
1666   // Install exception and return forward entry.
1667   address res = StubRoutines::throw_AbstractMethodError_entry();
1668   JRT_BLOCK
1669     methodHandle callee(thread, invoke.static_target(thread));
1670     if (!callee.is_null()) {
1671       oop recv = callerFrame.retrieve_receiver(&reg_map);
1672       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1673       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1674       res = StubRoutines::forward_exception_entry();
1675     }
1676   JRT_BLOCK_END
1677   return res;
1678 JRT_END
1679 
1680 
1681 // resolve a static call and patch code
1682 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1683   methodHandle callee_method;
1684   JRT_BLOCK
1685     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1686     thread->set_vm_result_2(callee_method());
1687   JRT_BLOCK_END
1688   // return compiled code entry point after potential safepoints
1689   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1690   return callee_method->verified_code_entry();
1691 JRT_END
1692 
1693 
1694 // resolve virtual call and update inline cache to monomorphic
1695 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1696   methodHandle callee_method;
1697   JRT_BLOCK
1698     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1699     thread->set_vm_result_2(callee_method());
1700   JRT_BLOCK_END
1701   // return compiled code entry point after potential safepoints
1702   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1703   return callee_method->verified_code_entry();
1704 JRT_END
1705 
1706 
1707 // Resolve a virtual call that can be statically bound (e.g., always
1708 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1709 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1710   methodHandle callee_method;
1711   JRT_BLOCK
1712     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1713     thread->set_vm_result_2(callee_method());
1714   JRT_BLOCK_END
1715   // return compiled code entry point after potential safepoints
1716   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1717   return callee_method->verified_code_entry();
1718 JRT_END
1719 
1720 // The handle_ic_miss_helper_internal function returns false if it failed due
1721 // to either running out of vtable stubs or ic stubs due to IC transitions
1722 // to transitional states. The needs_ic_stub_refill value will be set if
1723 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1724 // refills the IC stubs and tries again.
1725 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1726                                                    const frame& caller_frame, methodHandle callee_method,
1727                                                    Bytecodes::Code bc, CallInfo& call_info,
1728                                                    bool& needs_ic_stub_refill, TRAPS) {
1729   CompiledICLocker ml(caller_nm);
1730   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1731   bool should_be_mono = false;
1732   if (inline_cache->is_optimized()) {
1733     if (TraceCallFixup) {
1734       ResourceMark rm(THREAD);
1735       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1736       callee_method->print_short_name(tty);
1737       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1738     }
1739     should_be_mono = true;
1740   } else if (inline_cache->is_icholder_call()) {
1741     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1742     if (ic_oop != NULL) {
1743       if (!ic_oop->is_loader_alive()) {
1744         // Deferred IC cleaning due to concurrent class unloading
1745         if (!inline_cache->set_to_clean()) {
1746           needs_ic_stub_refill = true;
1747           return false;
1748         }
1749       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1750         // This isn't a real miss. We must have seen that compiled code
1751         // is now available and we want the call site converted to a
1752         // monomorphic compiled call site.
1753         // We can't assert for callee_method->code() != NULL because it
1754         // could have been deoptimized in the meantime
1755         if (TraceCallFixup) {
1756           ResourceMark rm(THREAD);
1757           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1758           callee_method->print_short_name(tty);
1759           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1760         }
1761         should_be_mono = true;
1762       }
1763     }
1764   }
1765 
1766   if (should_be_mono) {
1767     // We have a path that was monomorphic but was going interpreted
1768     // and now we have (or had) a compiled entry. We correct the IC
1769     // by using a new icBuffer.
1770     CompiledICInfo info;
1771     Klass* receiver_klass = receiver()->klass();
1772     inline_cache->compute_monomorphic_entry(callee_method,
1773                                             receiver_klass,
1774                                             inline_cache->is_optimized(),
1775                                             false, caller_nm->is_nmethod(),
1776                                             info, CHECK_false);
1777     if (!inline_cache->set_to_monomorphic(info)) {
1778       needs_ic_stub_refill = true;
1779       return false;
1780     }
1781   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1782     // Potential change to megamorphic
1783 
1784     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1785     if (needs_ic_stub_refill) {
1786       return false;
1787     }
1788     if (!successful) {
1789       if (!inline_cache->set_to_clean()) {
1790         needs_ic_stub_refill = true;
1791         return false;
1792       }
1793     }
1794   } else {
1795     // Either clean or megamorphic
1796   }
1797   return true;
1798 }
1799 
1800 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1801   ResourceMark rm(thread);
1802   CallInfo call_info;
1803   Bytecodes::Code bc;
1804 
1805   // receiver is NULL for static calls. An exception is thrown for NULL
1806   // receivers for non-static calls
1807   Handle receiver = find_callee_info(thread, bc, call_info,
1808                                      CHECK_(methodHandle()));
1809   // Compiler1 can produce virtual call sites that can actually be statically bound
1810   // If we fell thru to below we would think that the site was going megamorphic
1811   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1812   // we'd try and do a vtable dispatch however methods that can be statically bound
1813   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1814   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1815   // plain ic_miss) and the site will be converted to an optimized virtual call site
1816   // never to miss again. I don't believe C2 will produce code like this but if it
1817   // did this would still be the correct thing to do for it too, hence no ifdef.
1818   //
1819   if (call_info.resolved_method()->can_be_statically_bound()) {
1820     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1821     if (TraceCallFixup) {
1822       RegisterMap reg_map(thread, false);
1823       frame caller_frame = thread->last_frame().sender(&reg_map);
1824       ResourceMark rm(thread);
1825       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1826       callee_method->print_short_name(tty);
1827       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1828       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1829     }
1830     return callee_method;
1831   }
1832 
1833   methodHandle callee_method(thread, call_info.selected_method());
1834 
1835 #ifndef PRODUCT
1836   Atomic::inc(&_ic_miss_ctr);
1837 
1838   // Statistics & Tracing
1839   if (TraceCallFixup) {
1840     ResourceMark rm(thread);
1841     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1842     callee_method->print_short_name(tty);
1843     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1844   }
1845 
1846   if (ICMissHistogram) {
1847     MutexLocker m(VMStatistic_lock);
1848     RegisterMap reg_map(thread, false);
1849     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1850     // produce statistics under the lock
1851     trace_ic_miss(f.pc());
1852   }
1853 #endif
1854 
1855   // install an event collector so that when a vtable stub is created the
1856   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1857   // event can't be posted when the stub is created as locks are held
1858   // - instead the event will be deferred until the event collector goes
1859   // out of scope.
1860   JvmtiDynamicCodeEventCollector event_collector;
1861 
1862   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1863   // Transitioning IC caches may require transition stubs. If we run out
1864   // of transition stubs, we have to drop locks and perform a safepoint
1865   // that refills them.
1866   RegisterMap reg_map(thread, false);
1867   frame caller_frame = thread->last_frame().sender(&reg_map);
1868   CodeBlob* cb = caller_frame.cb();
1869   CompiledMethod* caller_nm = cb->as_compiled_method();
1870 
1871   for (;;) {
1872     ICRefillVerifier ic_refill_verifier;
1873     bool needs_ic_stub_refill = false;
1874     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1875                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1876     if (successful || !needs_ic_stub_refill) {
1877       return callee_method;
1878     } else {
1879       InlineCacheBuffer::refill_ic_stubs();
1880     }
1881   }
1882 }
1883 
1884 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1885   CompiledICLocker ml(caller_nm);
1886   if (is_static_call) {
1887     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1888     if (!ssc->is_clean()) {
1889       return ssc->set_to_clean();
1890     }
1891   } else {
1892     // compiled, dispatched call (which used to call an interpreted method)
1893     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1894     if (!inline_cache->is_clean()) {
1895       return inline_cache->set_to_clean();
1896     }
1897   }
1898   return true;
1899 }
1900 
1901 //
1902 // Resets a call-site in compiled code so it will get resolved again.
1903 // This routines handles both virtual call sites, optimized virtual call
1904 // sites, and static call sites. Typically used to change a call sites
1905 // destination from compiled to interpreted.
1906 //
1907 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1908   ResourceMark rm(thread);
1909   RegisterMap reg_map(thread, false);
1910   frame stub_frame = thread->last_frame();
1911   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1912   frame caller = stub_frame.sender(&reg_map);
1913 
1914   // Do nothing if the frame isn't a live compiled frame.
1915   // nmethod could be deoptimized by the time we get here
1916   // so no update to the caller is needed.
1917 
1918   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1919 
1920     address pc = caller.pc();
1921 
1922     // Check for static or virtual call
1923     bool is_static_call = false;
1924     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1925 
1926     // Default call_addr is the location of the "basic" call.
1927     // Determine the address of the call we a reresolving. With
1928     // Inline Caches we will always find a recognizable call.
1929     // With Inline Caches disabled we may or may not find a
1930     // recognizable call. We will always find a call for static
1931     // calls and for optimized virtual calls. For vanilla virtual
1932     // calls it depends on the state of the UseInlineCaches switch.
1933     //
1934     // With Inline Caches disabled we can get here for a virtual call
1935     // for two reasons:
1936     //   1 - calling an abstract method. The vtable for abstract methods
1937     //       will run us thru handle_wrong_method and we will eventually
1938     //       end up in the interpreter to throw the ame.
1939     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1940     //       call and between the time we fetch the entry address and
1941     //       we jump to it the target gets deoptimized. Similar to 1
1942     //       we will wind up in the interprter (thru a c2i with c2).
1943     //
1944     address call_addr = NULL;
1945     {
1946       // Get call instruction under lock because another thread may be
1947       // busy patching it.
1948       CompiledICLocker ml(caller_nm);
1949       // Location of call instruction
1950       call_addr = caller_nm->call_instruction_address(pc);
1951     }
1952     // Make sure nmethod doesn't get deoptimized and removed until
1953     // this is done with it.
1954     // CLEANUP - with lazy deopt shouldn't need this lock
1955     nmethodLocker nmlock(caller_nm);
1956 
1957     if (call_addr != NULL) {
1958       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1959       int ret = iter.next(); // Get item
1960       if (ret) {
1961         assert(iter.addr() == call_addr, "must find call");
1962         if (iter.type() == relocInfo::static_call_type) {
1963           is_static_call = true;
1964         } else {
1965           assert(iter.type() == relocInfo::virtual_call_type ||
1966                  iter.type() == relocInfo::opt_virtual_call_type
1967                 , "unexpected relocInfo. type");
1968         }
1969       } else {
1970         assert(!UseInlineCaches, "relocation info. must exist for this address");
1971       }
1972 
1973       // Cleaning the inline cache will force a new resolve. This is more robust
1974       // than directly setting it to the new destination, since resolving of calls
1975       // is always done through the same code path. (experience shows that it
1976       // leads to very hard to track down bugs, if an inline cache gets updated
1977       // to a wrong method). It should not be performance critical, since the
1978       // resolve is only done once.
1979 
1980       for (;;) {
1981         ICRefillVerifier ic_refill_verifier;
1982         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1983           InlineCacheBuffer::refill_ic_stubs();
1984         } else {
1985           break;
1986         }
1987       }
1988     }
1989   }
1990 
1991   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1992 
1993 
1994 #ifndef PRODUCT
1995   Atomic::inc(&_wrong_method_ctr);
1996 
1997   if (TraceCallFixup) {
1998     ResourceMark rm(thread);
1999     tty->print("handle_wrong_method reresolving call to");
2000     callee_method->print_short_name(tty);
2001     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
2002   }
2003 #endif
2004 
2005   return callee_method;
2006 }
2007 
2008 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
2009   // The faulting unsafe accesses should be changed to throw the error
2010   // synchronously instead. Meanwhile the faulting instruction will be
2011   // skipped over (effectively turning it into a no-op) and an
2012   // asynchronous exception will be raised which the thread will
2013   // handle at a later point. If the instruction is a load it will
2014   // return garbage.
2015 
2016   // Request an async exception.
2017   thread->set_pending_unsafe_access_error();
2018 
2019   // Return address of next instruction to execute.
2020   return next_pc;
2021 }
2022 
2023 #ifdef ASSERT
2024 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
2025                                                                 const BasicType* sig_bt,
2026                                                                 const VMRegPair* regs) {
2027   ResourceMark rm;
2028   const int total_args_passed = method->size_of_parameters();
2029   const VMRegPair*    regs_with_member_name = regs;
2030         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
2031 
2032   const int member_arg_pos = total_args_passed - 1;
2033   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
2034   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
2035 
2036   const bool is_outgoing = method->is_method_handle_intrinsic();
2037   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
2038 
2039   for (int i = 0; i < member_arg_pos; i++) {
2040     VMReg a =    regs_with_member_name[i].first();
2041     VMReg b = regs_without_member_name[i].first();
2042     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
2043   }
2044   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
2045 }
2046 #endif
2047 
2048 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
2049   if (destination != entry_point) {
2050     CodeBlob* callee = CodeCache::find_blob(destination);
2051     // callee == cb seems weird. It means calling interpreter thru stub.
2052     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
2053       // static call or optimized virtual
2054       if (TraceCallFixup) {
2055         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
2056         moop->print_short_name(tty);
2057         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
2058       }
2059       return true;
2060     } else {
2061       if (TraceCallFixup) {
2062         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
2063         moop->print_short_name(tty);
2064         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
2065       }
2066       // assert is too strong could also be resolve destinations.
2067       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
2068     }
2069   } else {
2070     if (TraceCallFixup) {
2071       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
2072       moop->print_short_name(tty);
2073       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
2074     }
2075   }
2076   return false;
2077 }
2078 
2079 // ---------------------------------------------------------------------------
2080 // We are calling the interpreter via a c2i. Normally this would mean that
2081 // we were called by a compiled method. However we could have lost a race
2082 // where we went int -> i2c -> c2i and so the caller could in fact be
2083 // interpreted. If the caller is compiled we attempt to patch the caller
2084 // so he no longer calls into the interpreter.
2085 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
2086   Method* moop(method);
2087 
2088   address entry_point = moop->from_compiled_entry_no_trampoline();
2089 
2090   // It's possible that deoptimization can occur at a call site which hasn't
2091   // been resolved yet, in which case this function will be called from
2092   // an nmethod that has been patched for deopt and we can ignore the
2093   // request for a fixup.
2094   // Also it is possible that we lost a race in that from_compiled_entry
2095   // is now back to the i2c in that case we don't need to patch and if
2096   // we did we'd leap into space because the callsite needs to use
2097   // "to interpreter" stub in order to load up the Method*. Don't
2098   // ask me how I know this...
2099 
2100   CodeBlob* cb = CodeCache::find_blob(caller_pc);
2101   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
2102     return;
2103   }
2104 
2105   // The check above makes sure this is a nmethod.
2106   CompiledMethod* nm = cb->as_compiled_method_or_null();
2107   assert(nm, "must be");
2108 
2109   // Get the return PC for the passed caller PC.
2110   address return_pc = caller_pc + frame::pc_return_offset;
2111 
2112   // There is a benign race here. We could be attempting to patch to a compiled
2113   // entry point at the same time the callee is being deoptimized. If that is
2114   // the case then entry_point may in fact point to a c2i and we'd patch the
2115   // call site with the same old data. clear_code will set code() to NULL
2116   // at the end of it. If we happen to see that NULL then we can skip trying
2117   // to patch. If we hit the window where the callee has a c2i in the
2118   // from_compiled_entry and the NULL isn't present yet then we lose the race
2119   // and patch the code with the same old data. Asi es la vida.
2120 
2121   if (moop->code() == NULL) return;
2122 
2123   if (nm->is_in_use()) {
2124     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
2125     CompiledICLocker ic_locker(nm);
2126     if (NativeCall::is_call_before(return_pc)) {
2127       ResourceMark mark;
2128       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
2129       //
2130       // bug 6281185. We might get here after resolving a call site to a vanilla
2131       // virtual call. Because the resolvee uses the verified entry it may then
2132       // see compiled code and attempt to patch the site by calling us. This would
2133       // then incorrectly convert the call site to optimized and its downhill from
2134       // there. If you're lucky you'll get the assert in the bugid, if not you've
2135       // just made a call site that could be megamorphic into a monomorphic site
2136       // for the rest of its life! Just another racing bug in the life of
2137       // fixup_callers_callsite ...
2138       //
2139       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2140       iter.next();
2141       assert(iter.has_current(), "must have a reloc at java call site");
2142       relocInfo::relocType typ = iter.reloc()->type();
2143       if (typ != relocInfo::static_call_type &&
2144            typ != relocInfo::opt_virtual_call_type &&
2145            typ != relocInfo::static_stub_type) {
2146         return;
2147       }
2148       address destination = call->destination();
2149       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2150         call->set_destination_mt_safe(entry_point);
2151       }
2152     }
2153   }
2154 JRT_END
2155 
2156 
2157 // same as JVM_Arraycopy, but called directly from compiled code
2158 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
2159                                                 oopDesc* dest, jint dest_pos,
2160                                                 jint length,
2161                                                 JavaThread* thread)) {
2162 #ifndef PRODUCT
2163   _slow_array_copy_ctr++;
2164 #endif
2165   // Check if we have null pointers
2166   if (src == NULL || dest == NULL) {
2167     THROW(vmSymbols::java_lang_NullPointerException());
2168   }
2169   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2170   // even though the copy_array API also performs dynamic checks to ensure
2171   // that src and dest are truly arrays (and are conformable).
2172   // The copy_array mechanism is awkward and could be removed, but
2173   // the compilers don't call this function except as a last resort,
2174   // so it probably doesn't matter.
2175   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2176                                         (arrayOopDesc*)dest, dest_pos,
2177                                         length, thread);
2178 }
2179 JRT_END
2180 
2181 // The caller of generate_class_cast_message() (or one of its callers)
2182 // must use a ResourceMark in order to correctly free the result.
2183 char* SharedRuntime::generate_class_cast_message(
2184     JavaThread* thread, Klass* caster_klass) {
2185 
2186   // Get target class name from the checkcast instruction
2187   vframeStream vfst(thread, true);
2188   assert(!vfst.at_end(), "Java frame must exist");
2189   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2190   constantPoolHandle cpool(thread, vfst.method()->constants());
2191   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2192   Symbol* target_klass_name = NULL;
2193   if (target_klass == NULL) {
2194     // This klass should be resolved, but just in case, get the name in the klass slot.
2195     target_klass_name = cpool->klass_name_at(cc.index());
2196   }
2197   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2198 }
2199 
2200 
2201 // The caller of generate_class_cast_message() (or one of its callers)
2202 // must use a ResourceMark in order to correctly free the result.
2203 char* SharedRuntime::generate_class_cast_message(
2204     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2205   const char* caster_name = caster_klass->external_name();
2206 
2207   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2208   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2209                                                    target_klass->external_name();
2210 
2211   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2212 
2213   const char* caster_klass_description = "";
2214   const char* target_klass_description = "";
2215   const char* klass_separator = "";
2216   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2217     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2218   } else {
2219     caster_klass_description = caster_klass->class_in_module_of_loader();
2220     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2221     klass_separator = (target_klass != NULL) ? "; " : "";
2222   }
2223 
2224   // add 3 for parenthesis and preceeding space
2225   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2226 
2227   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2228   if (message == NULL) {
2229     // Shouldn't happen, but don't cause even more problems if it does
2230     message = const_cast<char*>(caster_klass->external_name());
2231   } else {
2232     jio_snprintf(message,
2233                  msglen,
2234                  "class %s cannot be cast to class %s (%s%s%s)",
2235                  caster_name,
2236                  target_name,
2237                  caster_klass_description,
2238                  klass_separator,
2239                  target_klass_description
2240                  );
2241   }
2242   return message;
2243 }
2244 
2245 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2246   (void) JavaThread::current()->reguard_stack();
2247 JRT_END
2248 
2249 
2250 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2251 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2252   if (!SafepointSynchronize::is_synchronizing()) {
2253     // Only try quick_enter() if we're not trying to reach a safepoint
2254     // so that the calling thread reaches the safepoint more quickly.
2255     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2256   }
2257   // NO_ASYNC required because an async exception on the state transition destructor
2258   // would leave you with the lock held and it would never be released.
2259   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2260   // and the model is that an exception implies the method failed.
2261   JRT_BLOCK_NO_ASYNC
2262   oop obj(_obj);
2263   if (PrintBiasedLockingStatistics) {
2264     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2265   }
2266   Handle h_obj(THREAD, obj);
2267   ObjectSynchronizer::enter(h_obj, lock, CHECK);
2268   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2269   JRT_BLOCK_END
2270 JRT_END
2271 
2272 // Handles the uncommon cases of monitor unlocking in compiled code
2273 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2274    oop obj(_obj);
2275   assert(JavaThread::current() == THREAD, "invariant");
2276   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2277   // testing was unable to ever fire the assert that guarded it so I have removed it.
2278   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2279 #undef MIGHT_HAVE_PENDING
2280 #ifdef MIGHT_HAVE_PENDING
2281   // Save and restore any pending_exception around the exception mark.
2282   // While the slow_exit must not throw an exception, we could come into
2283   // this routine with one set.
2284   oop pending_excep = NULL;
2285   const char* pending_file;
2286   int pending_line;
2287   if (HAS_PENDING_EXCEPTION) {
2288     pending_excep = PENDING_EXCEPTION;
2289     pending_file  = THREAD->exception_file();
2290     pending_line  = THREAD->exception_line();
2291     CLEAR_PENDING_EXCEPTION;
2292   }
2293 #endif /* MIGHT_HAVE_PENDING */
2294 
2295   {
2296     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2297     EXCEPTION_MARK;
2298     ObjectSynchronizer::exit(obj, lock, THREAD);
2299   }
2300 
2301 #ifdef MIGHT_HAVE_PENDING
2302   if (pending_excep != NULL) {
2303     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2304   }
2305 #endif /* MIGHT_HAVE_PENDING */
2306 JRT_END
2307 
2308 #ifndef PRODUCT
2309 
2310 void SharedRuntime::print_statistics() {
2311   ttyLocker ttyl;
2312   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2313 
2314   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2315 
2316   SharedRuntime::print_ic_miss_histogram();
2317 
2318   if (CountRemovableExceptions) {
2319     if (_nof_removable_exceptions > 0) {
2320       Unimplemented(); // this counter is not yet incremented
2321       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2322     }
2323   }
2324 
2325   // Dump the JRT_ENTRY counters
2326   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2327   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2328   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2329   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2330   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2331   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2332   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2333 
2334   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2335   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2336   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2337   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2338   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2339 
2340   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2341   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2342   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2343   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2344   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2345   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2346   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2347   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2348   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2349   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2350   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2351   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2352   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2353   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2354   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2355   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2356 
2357   AdapterHandlerLibrary::print_statistics();
2358 
2359   if (xtty != NULL)  xtty->tail("statistics");
2360 }
2361 
2362 inline double percent(int x, int y) {
2363   return 100.0 * x / MAX2(y, 1);
2364 }
2365 
2366 class MethodArityHistogram {
2367  public:
2368   enum { MAX_ARITY = 256 };
2369  private:
2370   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2371   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2372   static int _max_arity;                      // max. arity seen
2373   static int _max_size;                       // max. arg size seen
2374 
2375   static void add_method_to_histogram(nmethod* nm) {
2376     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2377       Method* method = nm->method();
2378       ArgumentCount args(method->signature());
2379       int arity   = args.size() + (method->is_static() ? 0 : 1);
2380       int argsize = method->size_of_parameters();
2381       arity   = MIN2(arity, MAX_ARITY-1);
2382       argsize = MIN2(argsize, MAX_ARITY-1);
2383       int count = method->compiled_invocation_count();
2384       _arity_histogram[arity]  += count;
2385       _size_histogram[argsize] += count;
2386       _max_arity = MAX2(_max_arity, arity);
2387       _max_size  = MAX2(_max_size, argsize);
2388     }
2389   }
2390 
2391   void print_histogram_helper(int n, int* histo, const char* name) {
2392     const int N = MIN2(5, n);
2393     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2394     double sum = 0;
2395     double weighted_sum = 0;
2396     int i;
2397     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2398     double rest = sum;
2399     double percent = sum / 100;
2400     for (i = 0; i <= N; i++) {
2401       rest -= histo[i];
2402       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2403     }
2404     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2405     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2406   }
2407 
2408   void print_histogram() {
2409     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2410     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2411     tty->print_cr("\nSame for parameter size (in words):");
2412     print_histogram_helper(_max_size, _size_histogram, "size");
2413     tty->cr();
2414   }
2415 
2416  public:
2417   MethodArityHistogram() {
2418     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2419     _max_arity = _max_size = 0;
2420     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2421     CodeCache::nmethods_do(add_method_to_histogram);
2422     print_histogram();
2423   }
2424 };
2425 
2426 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2427 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2428 int MethodArityHistogram::_max_arity;
2429 int MethodArityHistogram::_max_size;
2430 
2431 void SharedRuntime::print_call_statistics(int comp_total) {
2432   tty->print_cr("Calls from compiled code:");
2433   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2434   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2435   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2436   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2437   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2438   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2439   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2440   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2441   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2442   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2443   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2444   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2445   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2446   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2447   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2448   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2449   tty->cr();
2450   tty->print_cr("Note 1: counter updates are not MT-safe.");
2451   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2452   tty->print_cr("        %% in nested categories are relative to their category");
2453   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2454   tty->cr();
2455 
2456   MethodArityHistogram h;
2457 }
2458 #endif
2459 
2460 
2461 // A simple wrapper class around the calling convention information
2462 // that allows sharing of adapters for the same calling convention.
2463 class AdapterFingerPrint : public CHeapObj<mtCode> {
2464  private:
2465   enum {
2466     _basic_type_bits = 4,
2467     _basic_type_mask = right_n_bits(_basic_type_bits),
2468     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2469     _compact_int_count = 3
2470   };
2471   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2472   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2473 
2474   union {
2475     int  _compact[_compact_int_count];
2476     int* _fingerprint;
2477   } _value;
2478   int _length; // A negative length indicates the fingerprint is in the compact form,
2479                // Otherwise _value._fingerprint is the array.
2480 
2481   // Remap BasicTypes that are handled equivalently by the adapters.
2482   // These are correct for the current system but someday it might be
2483   // necessary to make this mapping platform dependent.
2484   static int adapter_encoding(BasicType in) {
2485     switch (in) {
2486       case T_BOOLEAN:
2487       case T_BYTE:
2488       case T_SHORT:
2489       case T_CHAR:
2490         // There are all promoted to T_INT in the calling convention
2491         return T_INT;
2492 
2493       case T_OBJECT:
2494       case T_ARRAY:
2495         // In other words, we assume that any register good enough for
2496         // an int or long is good enough for a managed pointer.
2497 #ifdef _LP64
2498         return T_LONG;
2499 #else
2500         return T_INT;
2501 #endif
2502 
2503       case T_INT:
2504       case T_LONG:
2505       case T_FLOAT:
2506       case T_DOUBLE:
2507       case T_VOID:
2508         return in;
2509 
2510       default:
2511         ShouldNotReachHere();
2512         return T_CONFLICT;
2513     }
2514   }
2515 
2516  public:
2517   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2518     // The fingerprint is based on the BasicType signature encoded
2519     // into an array of ints with eight entries per int.
2520     int* ptr;
2521     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2522     if (len <= _compact_int_count) {
2523       assert(_compact_int_count == 3, "else change next line");
2524       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2525       // Storing the signature encoded as signed chars hits about 98%
2526       // of the time.
2527       _length = -len;
2528       ptr = _value._compact;
2529     } else {
2530       _length = len;
2531       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2532       ptr = _value._fingerprint;
2533     }
2534 
2535     // Now pack the BasicTypes with 8 per int
2536     int sig_index = 0;
2537     for (int index = 0; index < len; index++) {
2538       int value = 0;
2539       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2540         int bt = ((sig_index < total_args_passed)
2541                   ? adapter_encoding(sig_bt[sig_index++])
2542                   : 0);
2543         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2544         value = (value << _basic_type_bits) | bt;
2545       }
2546       ptr[index] = value;
2547     }
2548   }
2549 
2550   ~AdapterFingerPrint() {
2551     if (_length > 0) {
2552       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2553     }
2554   }
2555 
2556   int value(int index) {
2557     if (_length < 0) {
2558       return _value._compact[index];
2559     }
2560     return _value._fingerprint[index];
2561   }
2562   int length() {
2563     if (_length < 0) return -_length;
2564     return _length;
2565   }
2566 
2567   bool is_compact() {
2568     return _length <= 0;
2569   }
2570 
2571   unsigned int compute_hash() {
2572     int hash = 0;
2573     for (int i = 0; i < length(); i++) {
2574       int v = value(i);
2575       hash = (hash << 8) ^ v ^ (hash >> 5);
2576     }
2577     return (unsigned int)hash;
2578   }
2579 
2580   const char* as_string() {
2581     stringStream st;
2582     st.print("0x");
2583     for (int i = 0; i < length(); i++) {
2584       st.print("%08x", value(i));
2585     }
2586     return st.as_string();
2587   }
2588 
2589   bool equals(AdapterFingerPrint* other) {
2590     if (other->_length != _length) {
2591       return false;
2592     }
2593     if (_length < 0) {
2594       assert(_compact_int_count == 3, "else change next line");
2595       return _value._compact[0] == other->_value._compact[0] &&
2596              _value._compact[1] == other->_value._compact[1] &&
2597              _value._compact[2] == other->_value._compact[2];
2598     } else {
2599       for (int i = 0; i < _length; i++) {
2600         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2601           return false;
2602         }
2603       }
2604     }
2605     return true;
2606   }
2607 };
2608 
2609 
2610 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2611 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2612   friend class AdapterHandlerTableIterator;
2613 
2614  private:
2615 
2616 #ifndef PRODUCT
2617   static int _lookups; // number of calls to lookup
2618   static int _buckets; // number of buckets checked
2619   static int _equals;  // number of buckets checked with matching hash
2620   static int _hits;    // number of successful lookups
2621   static int _compact; // number of equals calls with compact signature
2622 #endif
2623 
2624   AdapterHandlerEntry* bucket(int i) {
2625     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2626   }
2627 
2628  public:
2629   AdapterHandlerTable()
2630     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2631 
2632   // Create a new entry suitable for insertion in the table
2633   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) {
2634     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2635     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2636     if (DumpSharedSpaces) {
2637       ((CDSAdapterHandlerEntry*)entry)->init();
2638     }
2639     return entry;
2640   }
2641 
2642   // Insert an entry into the table
2643   void add(AdapterHandlerEntry* entry) {
2644     int index = hash_to_index(entry->hash());
2645     add_entry(index, entry);
2646   }
2647 
2648   void free_entry(AdapterHandlerEntry* entry) {
2649     entry->deallocate();
2650     BasicHashtable<mtCode>::free_entry(entry);
2651   }
2652 
2653   // Find a entry with the same fingerprint if it exists
2654   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2655     NOT_PRODUCT(_lookups++);
2656     AdapterFingerPrint fp(total_args_passed, sig_bt);
2657     unsigned int hash = fp.compute_hash();
2658     int index = hash_to_index(hash);
2659     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2660       NOT_PRODUCT(_buckets++);
2661       if (e->hash() == hash) {
2662         NOT_PRODUCT(_equals++);
2663         if (fp.equals(e->fingerprint())) {
2664 #ifndef PRODUCT
2665           if (fp.is_compact()) _compact++;
2666           _hits++;
2667 #endif
2668           return e;
2669         }
2670       }
2671     }
2672     return NULL;
2673   }
2674 
2675 #ifndef PRODUCT
2676   void print_statistics() {
2677     ResourceMark rm;
2678     int longest = 0;
2679     int empty = 0;
2680     int total = 0;
2681     int nonempty = 0;
2682     for (int index = 0; index < table_size(); index++) {
2683       int count = 0;
2684       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2685         count++;
2686       }
2687       if (count != 0) nonempty++;
2688       if (count == 0) empty++;
2689       if (count > longest) longest = count;
2690       total += count;
2691     }
2692     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2693                   empty, longest, total, total / (double)nonempty);
2694     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2695                   _lookups, _buckets, _equals, _hits, _compact);
2696   }
2697 #endif
2698 };
2699 
2700 
2701 #ifndef PRODUCT
2702 
2703 int AdapterHandlerTable::_lookups;
2704 int AdapterHandlerTable::_buckets;
2705 int AdapterHandlerTable::_equals;
2706 int AdapterHandlerTable::_hits;
2707 int AdapterHandlerTable::_compact;
2708 
2709 #endif
2710 
2711 class AdapterHandlerTableIterator : public StackObj {
2712  private:
2713   AdapterHandlerTable* _table;
2714   int _index;
2715   AdapterHandlerEntry* _current;
2716 
2717   void scan() {
2718     while (_index < _table->table_size()) {
2719       AdapterHandlerEntry* a = _table->bucket(_index);
2720       _index++;
2721       if (a != NULL) {
2722         _current = a;
2723         return;
2724       }
2725     }
2726   }
2727 
2728  public:
2729   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2730     scan();
2731   }
2732   bool has_next() {
2733     return _current != NULL;
2734   }
2735   AdapterHandlerEntry* next() {
2736     if (_current != NULL) {
2737       AdapterHandlerEntry* result = _current;
2738       _current = _current->next();
2739       if (_current == NULL) scan();
2740       return result;
2741     } else {
2742       return NULL;
2743     }
2744   }
2745 };
2746 
2747 
2748 // ---------------------------------------------------------------------------
2749 // Implementation of AdapterHandlerLibrary
2750 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2751 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2752 const int AdapterHandlerLibrary_size = 16*K;
2753 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2754 
2755 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2756   // Should be called only when AdapterHandlerLibrary_lock is active.
2757   if (_buffer == NULL) // Initialize lazily
2758       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2759   return _buffer;
2760 }
2761 
2762 extern "C" void unexpected_adapter_call() {
2763   ShouldNotCallThis();
2764 }
2765 
2766 void AdapterHandlerLibrary::initialize() {
2767   if (_adapters != NULL) return;
2768   _adapters = new AdapterHandlerTable();
2769 
2770   // Create a special handler for abstract methods.  Abstract methods
2771   // are never compiled so an i2c entry is somewhat meaningless, but
2772   // throw AbstractMethodError just in case.
2773   // Pass wrong_method_abstract for the c2i transitions to return
2774   // AbstractMethodError for invalid invocations.
2775   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2776   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2777                                                               StubRoutines::throw_AbstractMethodError_entry(),
2778                                                               wrong_method_abstract, wrong_method_abstract);
2779 }
2780 
2781 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2782                                                       address i2c_entry,
2783                                                       address c2i_entry,
2784                                                       address c2i_unverified_entry,
2785                                                       address c2i_no_clinit_check_entry) {
2786   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2787 }
2788 
2789 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2790   AdapterHandlerEntry* entry = get_adapter0(method);
2791   if (entry != NULL && method->is_shared()) {
2792     // See comments around Method::link_method()
2793     MutexLocker mu(AdapterHandlerLibrary_lock);
2794     if (method->adapter() == NULL) {
2795       method->update_adapter_trampoline(entry);
2796     }
2797     address trampoline = method->from_compiled_entry();
2798     if (*(int*)trampoline == 0) {
2799       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2800       MacroAssembler _masm(&buffer);
2801       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2802       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2803       _masm.flush();
2804 
2805       if (PrintInterpreter) {
2806         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2807       }
2808     }
2809   }
2810 
2811   return entry;
2812 }
2813 
2814 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2815   // Use customized signature handler.  Need to lock around updates to
2816   // the AdapterHandlerTable (it is not safe for concurrent readers
2817   // and a single writer: this could be fixed if it becomes a
2818   // problem).
2819 
2820   ResourceMark rm;
2821 
2822   NOT_PRODUCT(int insts_size);
2823   AdapterBlob* new_adapter = NULL;
2824   AdapterHandlerEntry* entry = NULL;
2825   AdapterFingerPrint* fingerprint = NULL;
2826   {
2827     MutexLocker mu(AdapterHandlerLibrary_lock);
2828     // make sure data structure is initialized
2829     initialize();
2830 
2831     if (method->is_abstract()) {
2832       return _abstract_method_handler;
2833     }
2834 
2835     // Fill in the signature array, for the calling-convention call.
2836     int total_args_passed = method->size_of_parameters(); // All args on stack
2837 
2838     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2839     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2840     int i = 0;
2841     if (!method->is_static())  // Pass in receiver first
2842       sig_bt[i++] = T_OBJECT;
2843     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2844       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2845       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2846         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2847     }
2848     assert(i == total_args_passed, "");
2849 
2850     // Lookup method signature's fingerprint
2851     entry = _adapters->lookup(total_args_passed, sig_bt);
2852 
2853 #ifdef ASSERT
2854     AdapterHandlerEntry* shared_entry = NULL;
2855     // Start adapter sharing verification only after the VM is booted.
2856     if (VerifyAdapterSharing && (entry != NULL)) {
2857       shared_entry = entry;
2858       entry = NULL;
2859     }
2860 #endif
2861 
2862     if (entry != NULL) {
2863       return entry;
2864     }
2865 
2866     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2867     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2868 
2869     // Make a C heap allocated version of the fingerprint to store in the adapter
2870     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2871 
2872     // StubRoutines::code2() is initialized after this function can be called. As a result,
2873     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2874     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2875     // stub that ensure that an I2C stub is called from an interpreter frame.
2876     bool contains_all_checks = StubRoutines::code2() != NULL;
2877 
2878     // Create I2C & C2I handlers
2879     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2880     if (buf != NULL) {
2881       CodeBuffer buffer(buf);
2882       short buffer_locs[20];
2883       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2884                                              sizeof(buffer_locs)/sizeof(relocInfo));
2885 
2886       MacroAssembler _masm(&buffer);
2887       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2888                                                      total_args_passed,
2889                                                      comp_args_on_stack,
2890                                                      sig_bt,
2891                                                      regs,
2892                                                      fingerprint);
2893 #ifdef ASSERT
2894       if (VerifyAdapterSharing) {
2895         if (shared_entry != NULL) {
2896           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2897           // Release the one just created and return the original
2898           _adapters->free_entry(entry);
2899           return shared_entry;
2900         } else  {
2901           entry->save_code(buf->code_begin(), buffer.insts_size());
2902         }
2903       }
2904 #endif
2905 
2906       new_adapter = AdapterBlob::create(&buffer);
2907       NOT_PRODUCT(insts_size = buffer.insts_size());
2908     }
2909     if (new_adapter == NULL) {
2910       // CodeCache is full, disable compilation
2911       // Ought to log this but compile log is only per compile thread
2912       // and we're some non descript Java thread.
2913       return NULL; // Out of CodeCache space
2914     }
2915     entry->relocate(new_adapter->content_begin());
2916 #ifndef PRODUCT
2917     // debugging suppport
2918     if (PrintAdapterHandlers || PrintStubCode) {
2919       ttyLocker ttyl;
2920       entry->print_adapter_on(tty);
2921       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2922                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2923                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2924       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2925       if (Verbose || PrintStubCode) {
2926         address first_pc = entry->base_address();
2927         if (first_pc != NULL) {
2928           Disassembler::decode(first_pc, first_pc + insts_size);
2929           tty->cr();
2930         }
2931       }
2932     }
2933 #endif
2934     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2935     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2936     if (contains_all_checks || !VerifyAdapterCalls) {
2937       _adapters->add(entry);
2938     }
2939   }
2940   // Outside of the lock
2941   if (new_adapter != NULL) {
2942     char blob_id[256];
2943     jio_snprintf(blob_id,
2944                  sizeof(blob_id),
2945                  "%s(%s)@" PTR_FORMAT,
2946                  new_adapter->name(),
2947                  fingerprint->as_string(),
2948                  new_adapter->content_begin());
2949     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2950 
2951     if (JvmtiExport::should_post_dynamic_code_generated()) {
2952       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2953     }
2954   }
2955   return entry;
2956 }
2957 
2958 address AdapterHandlerEntry::base_address() {
2959   address base = _i2c_entry;
2960   if (base == NULL)  base = _c2i_entry;
2961   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2962   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2963   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
2964   return base;
2965 }
2966 
2967 void AdapterHandlerEntry::relocate(address new_base) {
2968   address old_base = base_address();
2969   assert(old_base != NULL, "");
2970   ptrdiff_t delta = new_base - old_base;
2971   if (_i2c_entry != NULL)
2972     _i2c_entry += delta;
2973   if (_c2i_entry != NULL)
2974     _c2i_entry += delta;
2975   if (_c2i_unverified_entry != NULL)
2976     _c2i_unverified_entry += delta;
2977   if (_c2i_no_clinit_check_entry != NULL)
2978     _c2i_no_clinit_check_entry += delta;
2979   assert(base_address() == new_base, "");
2980 }
2981 
2982 
2983 void AdapterHandlerEntry::deallocate() {
2984   delete _fingerprint;
2985 #ifdef ASSERT
2986   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2987 #endif
2988 }
2989 
2990 
2991 #ifdef ASSERT
2992 // Capture the code before relocation so that it can be compared
2993 // against other versions.  If the code is captured after relocation
2994 // then relative instructions won't be equivalent.
2995 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2996   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2997   _saved_code_length = length;
2998   memcpy(_saved_code, buffer, length);
2999 }
3000 
3001 
3002 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
3003   if (length != _saved_code_length) {
3004     return false;
3005   }
3006 
3007   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
3008 }
3009 #endif
3010 
3011 
3012 /**
3013  * Create a native wrapper for this native method.  The wrapper converts the
3014  * Java-compiled calling convention to the native convention, handles
3015  * arguments, and transitions to native.  On return from the native we transition
3016  * back to java blocking if a safepoint is in progress.
3017  */
3018 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3019   ResourceMark rm;
3020   nmethod* nm = NULL;
3021   address critical_entry = NULL;
3022 
3023   assert(method->is_native(), "must be native");
3024   assert(method->is_method_handle_intrinsic() ||
3025          method->has_native_function(), "must have something valid to call!");
3026 
3027   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
3028     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
3029     critical_entry = NativeLookup::lookup_critical_entry(method);
3030   }
3031 
3032   {
3033     // Perform the work while holding the lock, but perform any printing outside the lock
3034     MutexLocker mu(AdapterHandlerLibrary_lock);
3035     // See if somebody beat us to it
3036     if (method->code() != NULL) {
3037       return;
3038     }
3039 
3040     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3041     assert(compile_id > 0, "Must generate native wrapper");
3042 
3043 
3044     ResourceMark rm;
3045     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3046     if (buf != NULL) {
3047       CodeBuffer buffer(buf);
3048       double locs_buf[20];
3049       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3050       MacroAssembler _masm(&buffer);
3051 
3052       // Fill in the signature array, for the calling-convention call.
3053       const int total_args_passed = method->size_of_parameters();
3054 
3055       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3056       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3057       int i=0;
3058       if (!method->is_static())  // Pass in receiver first
3059         sig_bt[i++] = T_OBJECT;
3060       SignatureStream ss(method->signature());
3061       for (; !ss.at_return_type(); ss.next()) {
3062         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
3063         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
3064           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3065       }
3066       assert(i == total_args_passed, "");
3067       BasicType ret_type = ss.type();
3068 
3069       // Now get the compiled-Java layout as input (or output) arguments.
3070       // NOTE: Stubs for compiled entry points of method handle intrinsics
3071       // are just trampolines so the argument registers must be outgoing ones.
3072       const bool is_outgoing = method->is_method_handle_intrinsic();
3073       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
3074 
3075       // Generate the compiled-to-native wrapper code
3076       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
3077 
3078       if (nm != NULL) {
3079         {
3080           MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
3081           if (nm->make_in_use()) {
3082             method->set_code(method, nm);
3083           }
3084         }
3085 
3086         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3087         if (directive->PrintAssemblyOption) {
3088           nm->print_code();
3089         }
3090         DirectivesStack::release(directive);
3091       }
3092     }
3093   } // Unlock AdapterHandlerLibrary_lock
3094 
3095 
3096   // Install the generated code.
3097   if (nm != NULL) {
3098     const char *msg = method->is_static() ? "(static)" : "";
3099     CompileTask::print_ul(nm, msg);
3100     if (PrintCompilation) {
3101       ttyLocker ttyl;
3102       CompileTask::print(tty, nm, msg);
3103     }
3104     nm->post_compiled_method_load_event();
3105   }
3106 }
3107 
3108 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3109   assert(thread == JavaThread::current(), "must be");
3110   // The code is about to enter a JNI lazy critical native method and
3111   // _needs_gc is true, so if this thread is already in a critical
3112   // section then just return, otherwise this thread should block
3113   // until needs_gc has been cleared.
3114   if (thread->in_critical()) {
3115     return;
3116   }
3117   // Lock and unlock a critical section to give the system a chance to block
3118   GCLocker::lock_critical(thread);
3119   GCLocker::unlock_critical(thread);
3120 JRT_END
3121 
3122 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
3123   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3124   assert(obj != NULL, "Should not be null");
3125   oop o(obj);
3126   o = Universe::heap()->pin_object(thread, o);
3127   assert(o != NULL, "Should not be null");
3128   return o;
3129 JRT_END
3130 
3131 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
3132   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3133   assert(obj != NULL, "Should not be null");
3134   oop o(obj);
3135   Universe::heap()->unpin_object(thread, o);
3136 JRT_END
3137 
3138 // -------------------------------------------------------------------------
3139 // Java-Java calling convention
3140 // (what you use when Java calls Java)
3141 
3142 //------------------------------name_for_receiver----------------------------------
3143 // For a given signature, return the VMReg for parameter 0.
3144 VMReg SharedRuntime::name_for_receiver() {
3145   VMRegPair regs;
3146   BasicType sig_bt = T_OBJECT;
3147   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3148   // Return argument 0 register.  In the LP64 build pointers
3149   // take 2 registers, but the VM wants only the 'main' name.
3150   return regs.first();
3151 }
3152 
3153 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3154   // This method is returning a data structure allocating as a
3155   // ResourceObject, so do not put any ResourceMarks in here.
3156 
3157   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3158   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3159   int cnt = 0;
3160   if (has_receiver) {
3161     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3162   }
3163 
3164   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3165     BasicType type = ss.type();
3166     sig_bt[cnt++] = type;
3167     if (is_double_word_type(type))
3168       sig_bt[cnt++] = T_VOID;
3169   }
3170 
3171   if (has_appendix) {
3172     sig_bt[cnt++] = T_OBJECT;
3173   }
3174 
3175   assert(cnt < 256, "grow table size");
3176 
3177   int comp_args_on_stack;
3178   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3179 
3180   // the calling convention doesn't count out_preserve_stack_slots so
3181   // we must add that in to get "true" stack offsets.
3182 
3183   if (comp_args_on_stack) {
3184     for (int i = 0; i < cnt; i++) {
3185       VMReg reg1 = regs[i].first();
3186       if (reg1->is_stack()) {
3187         // Yuck
3188         reg1 = reg1->bias(out_preserve_stack_slots());
3189       }
3190       VMReg reg2 = regs[i].second();
3191       if (reg2->is_stack()) {
3192         // Yuck
3193         reg2 = reg2->bias(out_preserve_stack_slots());
3194       }
3195       regs[i].set_pair(reg2, reg1);
3196     }
3197   }
3198 
3199   // results
3200   *arg_size = cnt;
3201   return regs;
3202 }
3203 
3204 // OSR Migration Code
3205 //
3206 // This code is used convert interpreter frames into compiled frames.  It is
3207 // called from very start of a compiled OSR nmethod.  A temp array is
3208 // allocated to hold the interesting bits of the interpreter frame.  All
3209 // active locks are inflated to allow them to move.  The displaced headers and
3210 // active interpreter locals are copied into the temp buffer.  Then we return
3211 // back to the compiled code.  The compiled code then pops the current
3212 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3213 // copies the interpreter locals and displaced headers where it wants.
3214 // Finally it calls back to free the temp buffer.
3215 //
3216 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3217 
3218 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3219 
3220   //
3221   // This code is dependent on the memory layout of the interpreter local
3222   // array and the monitors. On all of our platforms the layout is identical
3223   // so this code is shared. If some platform lays the their arrays out
3224   // differently then this code could move to platform specific code or
3225   // the code here could be modified to copy items one at a time using
3226   // frame accessor methods and be platform independent.
3227 
3228   frame fr = thread->last_frame();
3229   assert(fr.is_interpreted_frame(), "");
3230   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3231 
3232   // Figure out how many monitors are active.
3233   int active_monitor_count = 0;
3234   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3235        kptr < fr.interpreter_frame_monitor_begin();
3236        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3237     if (kptr->obj() != NULL) active_monitor_count++;
3238   }
3239 
3240   // QQQ we could place number of active monitors in the array so that compiled code
3241   // could double check it.
3242 
3243   Method* moop = fr.interpreter_frame_method();
3244   int max_locals = moop->max_locals();
3245   // Allocate temp buffer, 1 word per local & 2 per active monitor
3246   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3247   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3248 
3249   // Copy the locals.  Order is preserved so that loading of longs works.
3250   // Since there's no GC I can copy the oops blindly.
3251   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3252   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3253                        (HeapWord*)&buf[0],
3254                        max_locals);
3255 
3256   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3257   int i = max_locals;
3258   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3259        kptr2 < fr.interpreter_frame_monitor_begin();
3260        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3261     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3262       BasicLock *lock = kptr2->lock();
3263       // Inflate so the displaced header becomes position-independent
3264       if (lock->displaced_header().is_unlocked())
3265         ObjectSynchronizer::inflate_helper(kptr2->obj());
3266       // Now the displaced header is free to move
3267       buf[i++] = (intptr_t)lock->displaced_header().value();
3268       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3269     }
3270   }
3271   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3272 
3273   return buf;
3274 JRT_END
3275 
3276 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3277   FREE_C_HEAP_ARRAY(intptr_t, buf);
3278 JRT_END
3279 
3280 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3281   AdapterHandlerTableIterator iter(_adapters);
3282   while (iter.has_next()) {
3283     AdapterHandlerEntry* a = iter.next();
3284     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3285   }
3286   return false;
3287 }
3288 
3289 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3290   AdapterHandlerTableIterator iter(_adapters);
3291   while (iter.has_next()) {
3292     AdapterHandlerEntry* a = iter.next();
3293     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3294       st->print("Adapter for signature: ");
3295       a->print_adapter_on(tty);
3296       return;
3297     }
3298   }
3299   assert(false, "Should have found handler");
3300 }
3301 
3302 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3303   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3304   if (get_i2c_entry() != NULL) {
3305     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3306   }
3307   if (get_c2i_entry() != NULL) {
3308     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3309   }
3310   if (get_c2i_unverified_entry() != NULL) {
3311     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3312   }
3313   if (get_c2i_no_clinit_check_entry() != NULL) {
3314     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3315   }
3316   st->cr();
3317 }
3318 
3319 #if INCLUDE_CDS
3320 
3321 void CDSAdapterHandlerEntry::init() {
3322   assert(DumpSharedSpaces, "used during dump time only");
3323   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3324   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3325 };
3326 
3327 #endif // INCLUDE_CDS
3328 
3329 
3330 #ifndef PRODUCT
3331 
3332 void AdapterHandlerLibrary::print_statistics() {
3333   _adapters->print_statistics();
3334 }
3335 
3336 #endif /* PRODUCT */
3337 
3338 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3339   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3340   if (thread->stack_reserved_zone_disabled()) {
3341   thread->enable_stack_reserved_zone();
3342   }
3343   thread->set_reserved_stack_activation(thread->stack_base());
3344 JRT_END
3345 
3346 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3347   ResourceMark rm(thread);
3348   frame activation;
3349   CompiledMethod* nm = NULL;
3350   int count = 1;
3351 
3352   assert(fr.is_java_frame(), "Must start on Java frame");
3353 
3354   while (true) {
3355     Method* method = NULL;
3356     bool found = false;
3357     if (fr.is_interpreted_frame()) {
3358       method = fr.interpreter_frame_method();
3359       if (method != NULL && method->has_reserved_stack_access()) {
3360         found = true;
3361       }
3362     } else {
3363       CodeBlob* cb = fr.cb();
3364       if (cb != NULL && cb->is_compiled()) {
3365         nm = cb->as_compiled_method();
3366         method = nm->method();
3367         // scope_desc_near() must be used, instead of scope_desc_at() because on
3368         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3369         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3370           method = sd->method();
3371           if (method != NULL && method->has_reserved_stack_access()) {
3372             found = true;
3373       }
3374     }
3375       }
3376     }
3377     if (found) {
3378       activation = fr;
3379       warning("Potentially dangerous stack overflow in "
3380               "ReservedStackAccess annotated method %s [%d]",
3381               method->name_and_sig_as_C_string(), count++);
3382       EventReservedStackActivation event;
3383       if (event.should_commit()) {
3384         event.set_method(method);
3385         event.commit();
3386       }
3387     }
3388     if (fr.is_first_java_frame()) {
3389       break;
3390     } else {
3391       fr = fr.java_sender();
3392     }
3393   }
3394   return activation;
3395 }
3396 
3397 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3398   // After any safepoint, just before going back to compiled code,
3399   // we inform the GC that we will be doing initializing writes to
3400   // this object in the future without emitting card-marks, so
3401   // GC may take any compensating steps.
3402 
3403   oop new_obj = thread->vm_result();
3404   if (new_obj == NULL) return;
3405 
3406   BarrierSet *bs = BarrierSet::barrier_set();
3407   bs->on_slowpath_allocation_exit(thread, new_obj);
3408 }