1 /* 2 * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 // no precompiled headers 26 #include "jvm.h" 27 #include "asm/macroAssembler.hpp" 28 #include "classfile/classLoader.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/icBuffer.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "logging/log.hpp" 36 #include "memory/allocation.inline.hpp" 37 #include "os_share_linux.hpp" 38 #include "prims/jniFastGetField.hpp" 39 #include "prims/jvm_misc.hpp" 40 #include "runtime/arguments.hpp" 41 #include "runtime/extendedPC.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/interfaceSupport.inline.hpp" 44 #include "runtime/java.hpp" 45 #include "runtime/javaCalls.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/osThread.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "runtime/stubRoutines.hpp" 50 #include "runtime/thread.inline.hpp" 51 #include "runtime/timer.hpp" 52 #include "services/memTracker.hpp" 53 #include "utilities/align.hpp" 54 #include "utilities/debug.hpp" 55 #include "utilities/events.hpp" 56 #include "utilities/vmError.hpp" 57 58 // put OS-includes here 59 # include <sys/types.h> 60 # include <sys/mman.h> 61 # include <pthread.h> 62 # include <signal.h> 63 # include <errno.h> 64 # include <dlfcn.h> 65 # include <stdlib.h> 66 # include <stdio.h> 67 # include <unistd.h> 68 # include <sys/resource.h> 69 # include <pthread.h> 70 # include <sys/stat.h> 71 # include <sys/time.h> 72 # include <sys/utsname.h> 73 # include <sys/socket.h> 74 # include <sys/wait.h> 75 # include <pwd.h> 76 # include <poll.h> 77 # include <ucontext.h> 78 #ifndef AMD64 79 # include <fpu_control.h> 80 #endif 81 82 #ifdef AMD64 83 #define REG_SP REG_RSP 84 #define REG_PC REG_RIP 85 #define REG_FP REG_RBP 86 #define SPELL_REG_SP "rsp" 87 #define SPELL_REG_FP "rbp" 88 #else 89 #define REG_SP REG_UESP 90 #define REG_PC REG_EIP 91 #define REG_FP REG_EBP 92 #define SPELL_REG_SP "esp" 93 #define SPELL_REG_FP "ebp" 94 #endif // AMD64 95 96 address os::current_stack_pointer() { 97 #ifdef SPARC_WORKS 98 void *esp; 99 __asm__("mov %%" SPELL_REG_SP ", %0":"=r"(esp)); 100 return (address) ((char*)esp + sizeof(long)*2); 101 #elif defined(__clang__) 102 void* esp; 103 __asm__ __volatile__ ("mov %%" SPELL_REG_SP ", %0":"=r"(esp):); 104 return (address) esp; 105 #else 106 register void *esp __asm__ (SPELL_REG_SP); 107 return (address) esp; 108 #endif 109 } 110 111 char* os::non_memory_address_word() { 112 // Must never look like an address returned by reserve_memory, 113 // even in its subfields (as defined by the CPU immediate fields, 114 // if the CPU splits constants across multiple instructions). 115 116 return (char*) -1; 117 } 118 119 address os::Linux::ucontext_get_pc(const ucontext_t * uc) { 120 return (address)uc->uc_mcontext.gregs[REG_PC]; 121 } 122 123 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) { 124 uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc; 125 } 126 127 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) { 128 return (intptr_t*)uc->uc_mcontext.gregs[REG_SP]; 129 } 130 131 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) { 132 return (intptr_t*)uc->uc_mcontext.gregs[REG_FP]; 133 } 134 135 // For Forte Analyzer AsyncGetCallTrace profiling support - thread 136 // is currently interrupted by SIGPROF. 137 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal 138 // frames. Currently we don't do that on Linux, so it's the same as 139 // os::fetch_frame_from_context(). 140 // This method is also used for stack overflow signal handling. 141 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread, 142 const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) { 143 144 assert(thread != NULL, "just checking"); 145 assert(ret_sp != NULL, "just checking"); 146 assert(ret_fp != NULL, "just checking"); 147 148 return os::fetch_frame_from_context(uc, ret_sp, ret_fp); 149 } 150 151 ExtendedPC os::fetch_frame_from_context(const void* ucVoid, 152 intptr_t** ret_sp, intptr_t** ret_fp) { 153 154 ExtendedPC epc; 155 const ucontext_t* uc = (const ucontext_t*)ucVoid; 156 157 if (uc != NULL) { 158 epc = ExtendedPC(os::Linux::ucontext_get_pc(uc)); 159 if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc); 160 if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc); 161 } else { 162 // construct empty ExtendedPC for return value checking 163 epc = ExtendedPC(NULL); 164 if (ret_sp) *ret_sp = (intptr_t *)NULL; 165 if (ret_fp) *ret_fp = (intptr_t *)NULL; 166 } 167 168 return epc; 169 } 170 171 frame os::fetch_frame_from_context(const void* ucVoid) { 172 intptr_t* sp; 173 intptr_t* fp; 174 ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp); 175 return frame(sp, fp, epc.pc()); 176 } 177 178 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) { 179 intptr_t* sp; 180 intptr_t* fp; 181 ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp); 182 return frame(sp, fp, epc.pc()); 183 } 184 185 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) { 186 address pc = (address) os::Linux::ucontext_get_pc(uc); 187 if (Interpreter::contains(pc)) { 188 // interpreter performs stack banging after the fixed frame header has 189 // been generated while the compilers perform it before. To maintain 190 // semantic consistency between interpreted and compiled frames, the 191 // method returns the Java sender of the current frame. 192 *fr = os::fetch_frame_from_ucontext(thread, uc); 193 if (!fr->is_first_java_frame()) { 194 // get_frame_at_stack_banging_point() is only called when we 195 // have well defined stacks so java_sender() calls do not need 196 // to assert safe_for_sender() first. 197 *fr = fr->java_sender(); 198 } 199 } else { 200 // more complex code with compiled code 201 assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above"); 202 CodeBlob* cb = CodeCache::find_blob(pc); 203 if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) { 204 // Not sure where the pc points to, fallback to default 205 // stack overflow handling 206 return false; 207 } else { 208 // in compiled code, the stack banging is performed just after the return pc 209 // has been pushed on the stack 210 intptr_t* fp = os::Linux::ucontext_get_fp(uc); 211 intptr_t* sp = os::Linux::ucontext_get_sp(uc); 212 *fr = frame(sp + 1, fp, (address)*sp); 213 if (!fr->is_java_frame()) { 214 assert(!fr->is_first_frame(), "Safety check"); 215 // See java_sender() comment above. 216 *fr = fr->java_sender(); 217 } 218 } 219 } 220 assert(fr->is_java_frame(), "Safety check"); 221 return true; 222 } 223 224 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get 225 // turned off by -fomit-frame-pointer, 226 frame os::get_sender_for_C_frame(frame* fr) { 227 return frame(fr->sender_sp(), fr->link(), fr->sender_pc()); 228 } 229 230 intptr_t* _get_previous_fp() { 231 #ifdef SPARC_WORKS 232 intptr_t **ebp; 233 __asm__("mov %%" SPELL_REG_FP ", %0":"=r"(ebp)); 234 #elif defined(__clang__) 235 intptr_t **ebp; 236 __asm__ __volatile__ ("mov %%" SPELL_REG_FP ", %0":"=r"(ebp):); 237 #else 238 register intptr_t **ebp __asm__ (SPELL_REG_FP); 239 #endif 240 // ebp is for this frame (_get_previous_fp). We want the ebp for the 241 // caller of os::current_frame*(), so go up two frames. However, for 242 // optimized builds, _get_previous_fp() will be inlined, so only go 243 // up 1 frame in that case. 244 #ifdef _NMT_NOINLINE_ 245 return **(intptr_t***)ebp; 246 #else 247 return *ebp; 248 #endif 249 } 250 251 252 frame os::current_frame() { 253 intptr_t* fp = _get_previous_fp(); 254 frame myframe((intptr_t*)os::current_stack_pointer(), 255 (intptr_t*)fp, 256 CAST_FROM_FN_PTR(address, os::current_frame)); 257 if (os::is_first_C_frame(&myframe)) { 258 // stack is not walkable 259 return frame(); 260 } else { 261 return os::get_sender_for_C_frame(&myframe); 262 } 263 } 264 265 // Utility functions 266 267 // From IA32 System Programming Guide 268 enum { 269 trap_page_fault = 0xE 270 }; 271 272 extern "C" JNIEXPORT int 273 JVM_handle_linux_signal(int sig, 274 siginfo_t* info, 275 void* ucVoid, 276 int abort_if_unrecognized) { 277 ucontext_t* uc = (ucontext_t*) ucVoid; 278 279 Thread* t = Thread::current_or_null_safe(); 280 281 // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away 282 // (no destructors can be run) 283 os::ThreadCrashProtection::check_crash_protection(sig, t); 284 285 SignalHandlerMark shm(t); 286 287 // Note: it's not uncommon that JNI code uses signal/sigset to install 288 // then restore certain signal handler (e.g. to temporarily block SIGPIPE, 289 // or have a SIGILL handler when detecting CPU type). When that happens, 290 // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To 291 // avoid unnecessary crash when libjsig is not preloaded, try handle signals 292 // that do not require siginfo/ucontext first. 293 294 if (sig == SIGPIPE || sig == SIGXFSZ) { 295 // allow chained handler to go first 296 if (os::Linux::chained_handler(sig, info, ucVoid)) { 297 return true; 298 } else { 299 // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219 300 return true; 301 } 302 } 303 304 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT 305 if ((sig == SIGSEGV || sig == SIGBUS) && info != NULL && info->si_addr == g_assert_poison) { 306 if (handle_assert_poison_fault(ucVoid, info->si_addr)) { 307 return 1; 308 } 309 } 310 #endif 311 312 JavaThread* thread = NULL; 313 VMThread* vmthread = NULL; 314 if (os::Linux::signal_handlers_are_installed) { 315 if (t != NULL ){ 316 if(t->is_Java_thread()) { 317 thread = (JavaThread*)t; 318 } 319 else if(t->is_VM_thread()){ 320 vmthread = (VMThread *)t; 321 } 322 } 323 } 324 /* 325 NOTE: does not seem to work on linux. 326 if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) { 327 // can't decode this kind of signal 328 info = NULL; 329 } else { 330 assert(sig == info->si_signo, "bad siginfo"); 331 } 332 */ 333 // decide if this trap can be handled by a stub 334 address stub = NULL; 335 336 address pc = NULL; 337 338 //%note os_trap_1 339 if (info != NULL && uc != NULL && thread != NULL) { 340 pc = (address) os::Linux::ucontext_get_pc(uc); 341 342 if (StubRoutines::is_safefetch_fault(pc)) { 343 os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc)); 344 return 1; 345 } 346 347 #ifndef AMD64 348 // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs 349 // This can happen in any running code (currently more frequently in 350 // interpreter code but has been seen in compiled code) 351 if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) { 352 fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due " 353 "to unstable signal handling in this distribution."); 354 } 355 #endif // AMD64 356 357 // Handle ALL stack overflow variations here 358 if (sig == SIGSEGV) { 359 address addr = (address) info->si_addr; 360 361 // check if fault address is within thread stack 362 if (thread->on_local_stack(addr)) { 363 // stack overflow 364 if (thread->in_stack_yellow_reserved_zone(addr)) { 365 if (thread->thread_state() == _thread_in_Java) { 366 if (thread->in_stack_reserved_zone(addr)) { 367 frame fr; 368 if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) { 369 assert(fr.is_java_frame(), "Must be a Java frame"); 370 frame activation = 371 SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr); 372 if (activation.sp() != NULL) { 373 thread->disable_stack_reserved_zone(); 374 if (activation.is_interpreted_frame()) { 375 thread->set_reserved_stack_activation((address)( 376 activation.fp() + frame::interpreter_frame_initial_sp_offset)); 377 } else { 378 thread->set_reserved_stack_activation((address)activation.unextended_sp()); 379 } 380 return 1; 381 } 382 } 383 } 384 // Throw a stack overflow exception. Guard pages will be reenabled 385 // while unwinding the stack. 386 thread->disable_stack_yellow_reserved_zone(); 387 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW); 388 } else { 389 // Thread was in the vm or native code. Return and try to finish. 390 thread->disable_stack_yellow_reserved_zone(); 391 return 1; 392 } 393 } else if (thread->in_stack_red_zone(addr)) { 394 // Fatal red zone violation. Disable the guard pages and fall through 395 // to handle_unexpected_exception way down below. 396 thread->disable_stack_red_zone(); 397 tty->print_raw_cr("An irrecoverable stack overflow has occurred."); 398 399 // This is a likely cause, but hard to verify. Let's just print 400 // it as a hint. 401 tty->print_raw_cr("Please check if any of your loaded .so files has " 402 "enabled executable stack (see man page execstack(8))"); 403 } else { 404 // Accessing stack address below sp may cause SEGV if current 405 // thread has MAP_GROWSDOWN stack. This should only happen when 406 // current thread was created by user code with MAP_GROWSDOWN flag 407 // and then attached to VM. See notes in os_linux.cpp. 408 if (thread->osthread()->expanding_stack() == 0) { 409 thread->osthread()->set_expanding_stack(); 410 if (os::Linux::manually_expand_stack(thread, addr)) { 411 thread->osthread()->clear_expanding_stack(); 412 return 1; 413 } 414 thread->osthread()->clear_expanding_stack(); 415 } else { 416 fatal("recursive segv. expanding stack."); 417 } 418 } 419 } 420 } 421 422 if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) { 423 // Verify that OS save/restore AVX registers. 424 stub = VM_Version::cpuinfo_cont_addr(); 425 } 426 427 if (thread->thread_state() == _thread_in_Java) { 428 // Java thread running in Java code => find exception handler if any 429 // a fault inside compiled code, the interpreter, or a stub 430 431 if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) { 432 stub = SharedRuntime::get_poll_stub(pc); 433 } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) { 434 // BugId 4454115: A read from a MappedByteBuffer can fault 435 // here if the underlying file has been truncated. 436 // Do not crash the VM in such a case. 437 CodeBlob* cb = CodeCache::find_blob_unsafe(pc); 438 CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL; 439 bool is_unsafe_arraycopy = thread->doing_unsafe_access() && UnsafeCopyMemory::contains_pc(pc); 440 if ((nm != NULL && nm->has_unsafe_access()) || is_unsafe_arraycopy) { 441 address next_pc = Assembler::locate_next_instruction(pc); 442 if (is_unsafe_arraycopy) { 443 next_pc = UnsafeCopyMemory::page_error_continue_pc(pc); 444 } 445 stub = SharedRuntime::handle_unsafe_access(thread, next_pc); 446 } 447 } 448 else 449 450 #ifdef AMD64 451 if (sig == SIGFPE && 452 (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) { 453 stub = 454 SharedRuntime:: 455 continuation_for_implicit_exception(thread, 456 pc, 457 SharedRuntime:: 458 IMPLICIT_DIVIDE_BY_ZERO); 459 #else 460 if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) { 461 // HACK: si_code does not work on linux 2.2.12-20!!! 462 int op = pc[0]; 463 if (op == 0xDB) { 464 // FIST 465 // TODO: The encoding of D2I in i486.ad can cause an exception 466 // prior to the fist instruction if there was an invalid operation 467 // pending. We want to dismiss that exception. From the win_32 468 // side it also seems that if it really was the fist causing 469 // the exception that we do the d2i by hand with different 470 // rounding. Seems kind of weird. 471 // NOTE: that we take the exception at the NEXT floating point instruction. 472 assert(pc[0] == 0xDB, "not a FIST opcode"); 473 assert(pc[1] == 0x14, "not a FIST opcode"); 474 assert(pc[2] == 0x24, "not a FIST opcode"); 475 return true; 476 } else if (op == 0xF7) { 477 // IDIV 478 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO); 479 } else { 480 // TODO: handle more cases if we are using other x86 instructions 481 // that can generate SIGFPE signal on linux. 482 tty->print_cr("unknown opcode 0x%X with SIGFPE.", op); 483 fatal("please update this code."); 484 } 485 #endif // AMD64 486 } else if (sig == SIGSEGV && 487 MacroAssembler::uses_implicit_null_check(info->si_addr)) { 488 // Determination of interpreter/vtable stub/compiled code null exception 489 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL); 490 } 491 } else if ((thread->thread_state() == _thread_in_vm || 492 thread->thread_state() == _thread_in_native) && 493 (sig == SIGBUS && /* info->si_code == BUS_OBJERR && */ 494 thread->doing_unsafe_access())) { 495 address next_pc = Assembler::locate_next_instruction(pc); 496 if (UnsafeCopyMemory::contains_pc(pc)) { 497 next_pc = UnsafeCopyMemory::page_error_continue_pc(pc); 498 } 499 stub = SharedRuntime::handle_unsafe_access(thread, next_pc); 500 } 501 502 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in 503 // and the heap gets shrunk before the field access. 504 if ((sig == SIGSEGV) || (sig == SIGBUS)) { 505 address addr = JNI_FastGetField::find_slowcase_pc(pc); 506 if (addr != (address)-1) { 507 stub = addr; 508 } 509 } 510 } 511 512 #ifndef AMD64 513 // Execution protection violation 514 // 515 // This should be kept as the last step in the triage. We don't 516 // have a dedicated trap number for a no-execute fault, so be 517 // conservative and allow other handlers the first shot. 518 // 519 // Note: We don't test that info->si_code == SEGV_ACCERR here. 520 // this si_code is so generic that it is almost meaningless; and 521 // the si_code for this condition may change in the future. 522 // Furthermore, a false-positive should be harmless. 523 if (UnguardOnExecutionViolation > 0 && 524 (sig == SIGSEGV || sig == SIGBUS) && 525 uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) { 526 int page_size = os::vm_page_size(); 527 address addr = (address) info->si_addr; 528 address pc = os::Linux::ucontext_get_pc(uc); 529 // Make sure the pc and the faulting address are sane. 530 // 531 // If an instruction spans a page boundary, and the page containing 532 // the beginning of the instruction is executable but the following 533 // page is not, the pc and the faulting address might be slightly 534 // different - we still want to unguard the 2nd page in this case. 535 // 536 // 15 bytes seems to be a (very) safe value for max instruction size. 537 bool pc_is_near_addr = 538 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15); 539 bool instr_spans_page_boundary = 540 (align_down((intptr_t) pc ^ (intptr_t) addr, 541 (intptr_t) page_size) > 0); 542 543 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) { 544 static volatile address last_addr = 545 (address) os::non_memory_address_word(); 546 547 // In conservative mode, don't unguard unless the address is in the VM 548 if (addr != last_addr && 549 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) { 550 551 // Set memory to RWX and retry 552 address page_start = align_down(addr, page_size); 553 bool res = os::protect_memory((char*) page_start, page_size, 554 os::MEM_PROT_RWX); 555 556 log_debug(os)("Execution protection violation " 557 "at " INTPTR_FORMAT 558 ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr), 559 p2i(page_start), (res ? "success" : "failed"), errno); 560 stub = pc; 561 562 // Set last_addr so if we fault again at the same address, we don't end 563 // up in an endless loop. 564 // 565 // There are two potential complications here. Two threads trapping at 566 // the same address at the same time could cause one of the threads to 567 // think it already unguarded, and abort the VM. Likely very rare. 568 // 569 // The other race involves two threads alternately trapping at 570 // different addresses and failing to unguard the page, resulting in 571 // an endless loop. This condition is probably even more unlikely than 572 // the first. 573 // 574 // Although both cases could be avoided by using locks or thread local 575 // last_addr, these solutions are unnecessary complication: this 576 // handler is a best-effort safety net, not a complete solution. It is 577 // disabled by default and should only be used as a workaround in case 578 // we missed any no-execute-unsafe VM code. 579 580 last_addr = addr; 581 } 582 } 583 } 584 #endif // !AMD64 585 586 if (stub != NULL) { 587 // save all thread context in case we need to restore it 588 if (thread != NULL) thread->set_saved_exception_pc(pc); 589 590 os::Linux::ucontext_set_pc(uc, stub); 591 return true; 592 } 593 594 // signal-chaining 595 if (os::Linux::chained_handler(sig, info, ucVoid)) { 596 return true; 597 } 598 599 if (!abort_if_unrecognized) { 600 // caller wants another chance, so give it to him 601 return false; 602 } 603 604 if (pc == NULL && uc != NULL) { 605 pc = os::Linux::ucontext_get_pc(uc); 606 } 607 608 // unmask current signal 609 sigset_t newset; 610 sigemptyset(&newset); 611 sigaddset(&newset, sig); 612 sigprocmask(SIG_UNBLOCK, &newset, NULL); 613 614 VMError::report_and_die(t, sig, pc, info, ucVoid); 615 616 ShouldNotReachHere(); 617 return true; // Mute compiler 618 } 619 620 void os::Linux::init_thread_fpu_state(void) { 621 #ifndef AMD64 622 // set fpu to 53 bit precision 623 set_fpu_control_word(0x27f); 624 #endif // !AMD64 625 } 626 627 int os::Linux::get_fpu_control_word(void) { 628 #ifdef AMD64 629 return 0; 630 #else 631 int fpu_control; 632 _FPU_GETCW(fpu_control); 633 return fpu_control & 0xffff; 634 #endif // AMD64 635 } 636 637 void os::Linux::set_fpu_control_word(int fpu_control) { 638 #ifndef AMD64 639 _FPU_SETCW(fpu_control); 640 #endif // !AMD64 641 } 642 643 // Check that the linux kernel version is 2.4 or higher since earlier 644 // versions do not support SSE without patches. 645 bool os::supports_sse() { 646 #ifdef AMD64 647 return true; 648 #else 649 struct utsname uts; 650 if( uname(&uts) != 0 ) return false; // uname fails? 651 char *minor_string; 652 int major = strtol(uts.release,&minor_string,10); 653 int minor = strtol(minor_string+1,NULL,10); 654 bool result = (major > 2 || (major==2 && minor >= 4)); 655 log_info(os)("OS version is %d.%d, which %s support SSE/SSE2", 656 major,minor, result ? "DOES" : "does NOT"); 657 return result; 658 #endif // AMD64 659 } 660 661 bool os::is_allocatable(size_t bytes) { 662 #ifdef AMD64 663 // unused on amd64? 664 return true; 665 #else 666 667 if (bytes < 2 * G) { 668 return true; 669 } 670 671 char* addr = reserve_memory(bytes, NULL); 672 673 if (addr != NULL) { 674 release_memory(addr, bytes); 675 } 676 677 return addr != NULL; 678 #endif // AMD64 679 } 680 681 //////////////////////////////////////////////////////////////////////////////// 682 // thread stack 683 684 // Minimum usable stack sizes required to get to user code. Space for 685 // HotSpot guard pages is added later. 686 size_t os::Posix::_compiler_thread_min_stack_allowed = 48 * K; 687 size_t os::Posix::_java_thread_min_stack_allowed = 40 * K; 688 #ifdef _LP64 689 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K; 690 #else 691 size_t os::Posix::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K; 692 #endif // _LP64 693 694 // return default stack size for thr_type 695 size_t os::Posix::default_stack_size(os::ThreadType thr_type) { 696 // default stack size (compiler thread needs larger stack) 697 #ifdef AMD64 698 size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M); 699 #else 700 size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K); 701 #endif // AMD64 702 return s; 703 } 704 705 ///////////////////////////////////////////////////////////////////////////// 706 // helper functions for fatal error handler 707 708 void os::print_context(outputStream *st, const void *context) { 709 if (context == NULL) return; 710 711 const ucontext_t *uc = (const ucontext_t*)context; 712 st->print_cr("Registers:"); 713 #ifdef AMD64 714 st->print( "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]); 715 st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]); 716 st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]); 717 st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]); 718 st->cr(); 719 st->print( "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]); 720 st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]); 721 st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]); 722 st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]); 723 st->cr(); 724 st->print( "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]); 725 st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]); 726 st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]); 727 st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]); 728 st->cr(); 729 st->print( "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]); 730 st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]); 731 st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]); 732 st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]); 733 st->cr(); 734 st->print( "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]); 735 st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]); 736 st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]); 737 st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]); 738 st->cr(); 739 st->print(" TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]); 740 #else 741 st->print( "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]); 742 st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]); 743 st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]); 744 st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]); 745 st->cr(); 746 st->print( "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]); 747 st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]); 748 st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]); 749 st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]); 750 st->cr(); 751 st->print( "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]); 752 st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]); 753 st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2); 754 #endif // AMD64 755 st->cr(); 756 st->cr(); 757 758 intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc); 759 st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp)); 760 print_hex_dump(st, (address)sp, (address)(sp + 8), sizeof(intptr_t)); 761 st->cr(); 762 763 // Note: it may be unsafe to inspect memory near pc. For example, pc may 764 // point to garbage if entry point in an nmethod is corrupted. Leave 765 // this at the end, and hope for the best. 766 address pc = os::Linux::ucontext_get_pc(uc); 767 print_instructions(st, pc, sizeof(char)); 768 st->cr(); 769 } 770 771 void os::print_register_info(outputStream *st, const void *context) { 772 if (context == NULL) return; 773 774 const ucontext_t *uc = (const ucontext_t*)context; 775 776 st->print_cr("Register to memory mapping:"); 777 st->cr(); 778 779 // this is horrendously verbose but the layout of the registers in the 780 // context does not match how we defined our abstract Register set, so 781 // we can't just iterate through the gregs area 782 783 // this is only for the "general purpose" registers 784 785 #ifdef AMD64 786 st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]); 787 st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]); 788 st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]); 789 st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]); 790 st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]); 791 st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]); 792 st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]); 793 st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]); 794 st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]); 795 st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]); 796 st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]); 797 st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]); 798 st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]); 799 st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]); 800 st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]); 801 st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]); 802 #else 803 st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]); 804 st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]); 805 st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]); 806 st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]); 807 st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]); 808 st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]); 809 st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]); 810 st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]); 811 #endif // AMD64 812 813 st->cr(); 814 } 815 816 void os::setup_fpu() { 817 #ifndef AMD64 818 address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std(); 819 __asm__ volatile ( "fldcw (%0)" : 820 : "r" (fpu_cntrl) : "memory"); 821 #endif // !AMD64 822 } 823 824 #ifndef PRODUCT 825 void os::verify_stack_alignment() { 826 #ifdef AMD64 827 // TODO: TSAN requires being built with Clang, but stack alignment assertion fails with Clang. 828 // assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment"); 829 #endif 830 } 831 #endif 832 833 834 /* 835 * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit 836 * updates (JDK-8023956). 837 */ 838 void os::workaround_expand_exec_shield_cs_limit() { 839 #if defined(IA32) 840 assert(Linux::initial_thread_stack_bottom() != NULL, "sanity"); 841 size_t page_size = os::vm_page_size(); 842 843 /* 844 * JDK-8197429 845 * 846 * Expand the stack mapping to the end of the initial stack before 847 * attempting to install the codebuf. This is needed because newer 848 * Linux kernels impose a distance of a megabyte between stack 849 * memory and other memory regions. If we try to install the 850 * codebuf before expanding the stack the installation will appear 851 * to succeed but we'll get a segfault later if we expand the stack 852 * in Java code. 853 * 854 */ 855 if (os::is_primordial_thread()) { 856 address limit = Linux::initial_thread_stack_bottom(); 857 if (! DisablePrimordialThreadGuardPages) { 858 limit += JavaThread::stack_red_zone_size() + 859 JavaThread::stack_yellow_zone_size(); 860 } 861 os::Linux::expand_stack_to(limit); 862 } 863 864 /* 865 * Take the highest VA the OS will give us and exec 866 * 867 * Although using -(pagesz) as mmap hint works on newer kernel as you would 868 * think, older variants affected by this work-around don't (search forward only). 869 * 870 * On the affected distributions, we understand the memory layout to be: 871 * 872 * TASK_LIMIT= 3G, main stack base close to TASK_LIMT. 873 * 874 * A few pages south main stack will do it. 875 * 876 * If we are embedded in an app other than launcher (initial != main stack), 877 * we don't have much control or understanding of the address space, just let it slide. 878 */ 879 char* hint = (char*)(Linux::initial_thread_stack_bottom() - 880 (JavaThread::stack_guard_zone_size() + page_size)); 881 char* codebuf = os::attempt_reserve_memory_at(page_size, hint); 882 883 if (codebuf == NULL) { 884 // JDK-8197429: There may be a stack gap of one megabyte between 885 // the limit of the stack and the nearest memory region: this is a 886 // Linux kernel workaround for CVE-2017-1000364. If we failed to 887 // map our codebuf, try again at an address one megabyte lower. 888 hint -= 1 * M; 889 codebuf = os::attempt_reserve_memory_at(page_size, hint); 890 } 891 892 if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) { 893 return; // No matter, we tried, best effort. 894 } 895 896 MemTracker::record_virtual_memory_type((address)codebuf, mtInternal); 897 898 log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf); 899 900 // Some code to exec: the 'ret' instruction 901 codebuf[0] = 0xC3; 902 903 // Call the code in the codebuf 904 __asm__ volatile("call *%0" : : "r"(codebuf)); 905 906 // keep the page mapped so CS limit isn't reduced. 907 #endif 908 } 909 910 int os::extra_bang_size_in_bytes() { 911 // JDK-8050147 requires the full cache line bang for x86. 912 return VM_Version::L1_line_size(); 913 }