1 /* 2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "compiler/disassembler.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "interpreter/interpreterRuntime.hpp" 30 #include "interpreter/interp_masm.hpp" 31 #include "interpreter/templateTable.hpp" 32 #include "memory/universe.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/objArrayKlass.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "prims/methodHandles.hpp" 37 #include "runtime/frame.inline.hpp" 38 #include "runtime/safepointMechanism.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 #include "runtime/synchronizer.hpp" 42 #include "utilities/macros.hpp" 43 44 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 45 46 // Global Register Names 47 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 48 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 49 50 // Platform-dependent initialization 51 void TemplateTable::pd_initialize() { 52 // No x86 specific initialization 53 } 54 55 // Address Computation: local variables 56 static inline Address iaddress(int n) { 57 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 58 } 59 60 static inline Address laddress(int n) { 61 return iaddress(n + 1); 62 } 63 64 #ifndef _LP64 65 static inline Address haddress(int n) { 66 return iaddress(n + 0); 67 } 68 #endif 69 70 static inline Address faddress(int n) { 71 return iaddress(n); 72 } 73 74 static inline Address daddress(int n) { 75 return laddress(n); 76 } 77 78 static inline Address aaddress(int n) { 79 return iaddress(n); 80 } 81 82 static inline Address iaddress(Register r) { 83 return Address(rlocals, r, Address::times_ptr); 84 } 85 86 static inline Address laddress(Register r) { 87 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 88 } 89 90 #ifndef _LP64 91 static inline Address haddress(Register r) { 92 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 93 } 94 #endif 95 96 static inline Address faddress(Register r) { 97 return iaddress(r); 98 } 99 100 static inline Address daddress(Register r) { 101 return laddress(r); 102 } 103 104 static inline Address aaddress(Register r) { 105 return iaddress(r); 106 } 107 108 109 // expression stack 110 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 111 // data beyond the rsp which is potentially unsafe in an MT environment; 112 // an interrupt may overwrite that data.) 113 static inline Address at_rsp () { 114 return Address(rsp, 0); 115 } 116 117 // At top of Java expression stack which may be different than esp(). It 118 // isn't for category 1 objects. 119 static inline Address at_tos () { 120 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 121 } 122 123 static inline Address at_tos_p1() { 124 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 125 } 126 127 static inline Address at_tos_p2() { 128 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 129 } 130 131 // Condition conversion 132 static Assembler::Condition j_not(TemplateTable::Condition cc) { 133 switch (cc) { 134 case TemplateTable::equal : return Assembler::notEqual; 135 case TemplateTable::not_equal : return Assembler::equal; 136 case TemplateTable::less : return Assembler::greaterEqual; 137 case TemplateTable::less_equal : return Assembler::greater; 138 case TemplateTable::greater : return Assembler::lessEqual; 139 case TemplateTable::greater_equal: return Assembler::less; 140 } 141 ShouldNotReachHere(); 142 return Assembler::zero; 143 } 144 145 146 147 // Miscelaneous helper routines 148 // Store an oop (or NULL) at the address described by obj. 149 // If val == noreg this means store a NULL 150 151 152 static void do_oop_store(InterpreterMacroAssembler* _masm, 153 Address dst, 154 Register val, 155 DecoratorSet decorators = 0) { 156 assert(val == noreg || val == rax, "parameter is just for looks"); 157 __ store_heap_oop(dst, val, rdx, rbx, decorators); 158 } 159 160 static void do_oop_load(InterpreterMacroAssembler* _masm, 161 Address src, 162 Register dst, 163 DecoratorSet decorators = 0) { 164 __ load_heap_oop(dst, src, rdx, rbx, decorators); 165 } 166 167 Address TemplateTable::at_bcp(int offset) { 168 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 169 return Address(rbcp, offset); 170 } 171 172 173 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 174 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 175 int byte_no) { 176 if (!RewriteBytecodes) return; 177 Label L_patch_done; 178 179 switch (bc) { 180 case Bytecodes::_fast_aputfield: 181 case Bytecodes::_fast_bputfield: 182 case Bytecodes::_fast_zputfield: 183 case Bytecodes::_fast_cputfield: 184 case Bytecodes::_fast_dputfield: 185 case Bytecodes::_fast_fputfield: 186 case Bytecodes::_fast_iputfield: 187 case Bytecodes::_fast_lputfield: 188 case Bytecodes::_fast_sputfield: 189 { 190 // We skip bytecode quickening for putfield instructions when 191 // the put_code written to the constant pool cache is zero. 192 // This is required so that every execution of this instruction 193 // calls out to InterpreterRuntime::resolve_get_put to do 194 // additional, required work. 195 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 196 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 197 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 198 __ movl(bc_reg, bc); 199 __ cmpl(temp_reg, (int) 0); 200 __ jcc(Assembler::zero, L_patch_done); // don't patch 201 } 202 break; 203 default: 204 assert(byte_no == -1, "sanity"); 205 // the pair bytecodes have already done the load. 206 if (load_bc_into_bc_reg) { 207 __ movl(bc_reg, bc); 208 } 209 } 210 211 if (JvmtiExport::can_post_breakpoint()) { 212 Label L_fast_patch; 213 // if a breakpoint is present we can't rewrite the stream directly 214 __ movzbl(temp_reg, at_bcp(0)); 215 __ cmpl(temp_reg, Bytecodes::_breakpoint); 216 __ jcc(Assembler::notEqual, L_fast_patch); 217 __ get_method(temp_reg); 218 // Let breakpoint table handling rewrite to quicker bytecode 219 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 220 #ifndef ASSERT 221 __ jmpb(L_patch_done); 222 #else 223 __ jmp(L_patch_done); 224 #endif 225 __ bind(L_fast_patch); 226 } 227 228 #ifdef ASSERT 229 Label L_okay; 230 __ load_unsigned_byte(temp_reg, at_bcp(0)); 231 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 232 __ jcc(Assembler::equal, L_okay); 233 __ cmpl(temp_reg, bc_reg); 234 __ jcc(Assembler::equal, L_okay); 235 __ stop("patching the wrong bytecode"); 236 __ bind(L_okay); 237 #endif 238 239 // patch bytecode 240 __ movb(at_bcp(0), bc_reg); 241 __ bind(L_patch_done); 242 } 243 // Individual instructions 244 245 246 void TemplateTable::nop() { 247 transition(vtos, vtos); 248 // nothing to do 249 } 250 251 void TemplateTable::shouldnotreachhere() { 252 transition(vtos, vtos); 253 __ stop("shouldnotreachhere bytecode"); 254 } 255 256 void TemplateTable::aconst_null() { 257 transition(vtos, atos); 258 __ xorl(rax, rax); 259 } 260 261 void TemplateTable::iconst(int value) { 262 transition(vtos, itos); 263 if (value == 0) { 264 __ xorl(rax, rax); 265 } else { 266 __ movl(rax, value); 267 } 268 } 269 270 void TemplateTable::lconst(int value) { 271 transition(vtos, ltos); 272 if (value == 0) { 273 __ xorl(rax, rax); 274 } else { 275 __ movl(rax, value); 276 } 277 #ifndef _LP64 278 assert(value >= 0, "check this code"); 279 __ xorptr(rdx, rdx); 280 #endif 281 } 282 283 284 285 void TemplateTable::fconst(int value) { 286 transition(vtos, ftos); 287 if (UseSSE >= 1) { 288 static float one = 1.0f, two = 2.0f; 289 switch (value) { 290 case 0: 291 __ xorps(xmm0, xmm0); 292 break; 293 case 1: 294 __ movflt(xmm0, ExternalAddress((address) &one)); 295 break; 296 case 2: 297 __ movflt(xmm0, ExternalAddress((address) &two)); 298 break; 299 default: 300 ShouldNotReachHere(); 301 break; 302 } 303 } else { 304 #ifdef _LP64 305 ShouldNotReachHere(); 306 #else 307 if (value == 0) { __ fldz(); 308 } else if (value == 1) { __ fld1(); 309 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 310 } else { ShouldNotReachHere(); 311 } 312 #endif // _LP64 313 } 314 } 315 316 void TemplateTable::dconst(int value) { 317 transition(vtos, dtos); 318 if (UseSSE >= 2) { 319 static double one = 1.0; 320 switch (value) { 321 case 0: 322 __ xorpd(xmm0, xmm0); 323 break; 324 case 1: 325 __ movdbl(xmm0, ExternalAddress((address) &one)); 326 break; 327 default: 328 ShouldNotReachHere(); 329 break; 330 } 331 } else { 332 #ifdef _LP64 333 ShouldNotReachHere(); 334 #else 335 if (value == 0) { __ fldz(); 336 } else if (value == 1) { __ fld1(); 337 } else { ShouldNotReachHere(); 338 } 339 #endif 340 } 341 } 342 343 void TemplateTable::bipush() { 344 transition(vtos, itos); 345 __ load_signed_byte(rax, at_bcp(1)); 346 } 347 348 void TemplateTable::sipush() { 349 transition(vtos, itos); 350 __ load_unsigned_short(rax, at_bcp(1)); 351 __ bswapl(rax); 352 __ sarl(rax, 16); 353 } 354 355 void TemplateTable::ldc(bool wide) { 356 transition(vtos, vtos); 357 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 358 Label call_ldc, notFloat, notClass, notInt, Done; 359 360 if (wide) { 361 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 362 } else { 363 __ load_unsigned_byte(rbx, at_bcp(1)); 364 } 365 366 __ get_cpool_and_tags(rcx, rax); 367 const int base_offset = ConstantPool::header_size() * wordSize; 368 const int tags_offset = Array<u1>::base_offset_in_bytes(); 369 370 // get type 371 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 372 373 // unresolved class - get the resolved class 374 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 375 __ jccb(Assembler::equal, call_ldc); 376 377 // unresolved class in error state - call into runtime to throw the error 378 // from the first resolution attempt 379 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 380 __ jccb(Assembler::equal, call_ldc); 381 382 // resolved class - need to call vm to get java mirror of the class 383 __ cmpl(rdx, JVM_CONSTANT_Class); 384 __ jcc(Assembler::notEqual, notClass); 385 386 __ bind(call_ldc); 387 388 __ movl(rarg, wide); 389 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 390 391 __ push(atos); 392 __ jmp(Done); 393 394 __ bind(notClass); 395 __ cmpl(rdx, JVM_CONSTANT_Float); 396 __ jccb(Assembler::notEqual, notFloat); 397 398 // ftos 399 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 400 __ push(ftos); 401 __ jmp(Done); 402 403 __ bind(notFloat); 404 __ cmpl(rdx, JVM_CONSTANT_Integer); 405 __ jccb(Assembler::notEqual, notInt); 406 407 // itos 408 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 409 __ push(itos); 410 __ jmp(Done); 411 412 // assume the tag is for condy; if not, the VM runtime will tell us 413 __ bind(notInt); 414 condy_helper(Done); 415 416 __ bind(Done); 417 } 418 419 // Fast path for caching oop constants. 420 void TemplateTable::fast_aldc(bool wide) { 421 transition(vtos, atos); 422 423 Register result = rax; 424 Register tmp = rdx; 425 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 426 int index_size = wide ? sizeof(u2) : sizeof(u1); 427 428 Label resolved; 429 430 // We are resolved if the resolved reference cache entry contains a 431 // non-null object (String, MethodType, etc.) 432 assert_different_registers(result, tmp); 433 __ get_cache_index_at_bcp(tmp, 1, index_size); 434 __ load_resolved_reference_at_index(result, tmp); 435 __ testptr(result, result); 436 __ jcc(Assembler::notZero, resolved); 437 438 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 439 440 // first time invocation - must resolve first 441 __ movl(rarg, (int)bytecode()); 442 __ call_VM(result, entry, rarg); 443 __ bind(resolved); 444 445 { // Check for the null sentinel. 446 // If we just called the VM, it already did the mapping for us, 447 // but it's harmless to retry. 448 Label notNull; 449 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 450 __ movptr(tmp, null_sentinel); 451 __ cmpoop(tmp, result); 452 __ jccb(Assembler::notEqual, notNull); 453 __ xorptr(result, result); // NULL object reference 454 __ bind(notNull); 455 } 456 457 if (VerifyOops) { 458 __ verify_oop(result); 459 } 460 } 461 462 void TemplateTable::ldc2_w() { 463 transition(vtos, vtos); 464 Label notDouble, notLong, Done; 465 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 466 467 __ get_cpool_and_tags(rcx, rax); 468 const int base_offset = ConstantPool::header_size() * wordSize; 469 const int tags_offset = Array<u1>::base_offset_in_bytes(); 470 471 // get type 472 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 473 __ cmpl(rdx, JVM_CONSTANT_Double); 474 __ jccb(Assembler::notEqual, notDouble); 475 476 // dtos 477 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 478 __ push(dtos); 479 480 __ jmp(Done); 481 __ bind(notDouble); 482 __ cmpl(rdx, JVM_CONSTANT_Long); 483 __ jccb(Assembler::notEqual, notLong); 484 485 // ltos 486 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 487 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 488 __ push(ltos); 489 __ jmp(Done); 490 491 __ bind(notLong); 492 condy_helper(Done); 493 494 __ bind(Done); 495 } 496 497 void TemplateTable::condy_helper(Label& Done) { 498 const Register obj = rax; 499 const Register off = rbx; 500 const Register flags = rcx; 501 const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 502 __ movl(rarg, (int)bytecode()); 503 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 504 #ifndef _LP64 505 // borrow rdi from locals 506 __ get_thread(rdi); 507 __ get_vm_result_2(flags, rdi); 508 __ restore_locals(); 509 #else 510 __ get_vm_result_2(flags, r15_thread); 511 #endif 512 // VMr = obj = base address to find primitive value to push 513 // VMr2 = flags = (tos, off) using format of CPCE::_flags 514 __ movl(off, flags); 515 __ andl(off, ConstantPoolCacheEntry::field_index_mask); 516 const Address field(obj, off, Address::times_1, 0*wordSize); 517 518 // What sort of thing are we loading? 519 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 520 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 521 522 switch (bytecode()) { 523 case Bytecodes::_ldc: 524 case Bytecodes::_ldc_w: 525 { 526 // tos in (itos, ftos, stos, btos, ctos, ztos) 527 Label notInt, notFloat, notShort, notByte, notChar, notBool; 528 __ cmpl(flags, itos); 529 __ jcc(Assembler::notEqual, notInt); 530 // itos 531 __ movl(rax, field); 532 __ push(itos); 533 __ jmp(Done); 534 535 __ bind(notInt); 536 __ cmpl(flags, ftos); 537 __ jcc(Assembler::notEqual, notFloat); 538 // ftos 539 __ load_float(field); 540 __ push(ftos); 541 __ jmp(Done); 542 543 __ bind(notFloat); 544 __ cmpl(flags, stos); 545 __ jcc(Assembler::notEqual, notShort); 546 // stos 547 __ load_signed_short(rax, field); 548 __ push(stos); 549 __ jmp(Done); 550 551 __ bind(notShort); 552 __ cmpl(flags, btos); 553 __ jcc(Assembler::notEqual, notByte); 554 // btos 555 __ load_signed_byte(rax, field); 556 __ push(btos); 557 __ jmp(Done); 558 559 __ bind(notByte); 560 __ cmpl(flags, ctos); 561 __ jcc(Assembler::notEqual, notChar); 562 // ctos 563 __ load_unsigned_short(rax, field); 564 __ push(ctos); 565 __ jmp(Done); 566 567 __ bind(notChar); 568 __ cmpl(flags, ztos); 569 __ jcc(Assembler::notEqual, notBool); 570 // ztos 571 __ load_signed_byte(rax, field); 572 __ push(ztos); 573 __ jmp(Done); 574 575 __ bind(notBool); 576 break; 577 } 578 579 case Bytecodes::_ldc2_w: 580 { 581 Label notLong, notDouble; 582 __ cmpl(flags, ltos); 583 __ jcc(Assembler::notEqual, notLong); 584 // ltos 585 // Loading high word first because movptr clobbers rax 586 NOT_LP64(__ movptr(rdx, field.plus_disp(4))); 587 __ movptr(rax, field); 588 __ push(ltos); 589 __ jmp(Done); 590 591 __ bind(notLong); 592 __ cmpl(flags, dtos); 593 __ jcc(Assembler::notEqual, notDouble); 594 // dtos 595 __ load_double(field); 596 __ push(dtos); 597 __ jmp(Done); 598 599 __ bind(notDouble); 600 break; 601 } 602 603 default: 604 ShouldNotReachHere(); 605 } 606 607 __ stop("bad ldc/condy"); 608 } 609 610 void TemplateTable::locals_index(Register reg, int offset) { 611 __ load_unsigned_byte(reg, at_bcp(offset)); 612 __ negptr(reg); 613 } 614 615 void TemplateTable::iload() { 616 iload_internal(); 617 } 618 619 void TemplateTable::nofast_iload() { 620 iload_internal(may_not_rewrite); 621 } 622 623 void TemplateTable::iload_internal(RewriteControl rc) { 624 transition(vtos, itos); 625 if (RewriteFrequentPairs && rc == may_rewrite) { 626 Label rewrite, done; 627 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 628 LP64_ONLY(assert(rbx != bc, "register damaged")); 629 630 // get next byte 631 __ load_unsigned_byte(rbx, 632 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 633 // if _iload, wait to rewrite to iload2. We only want to rewrite the 634 // last two iloads in a pair. Comparing against fast_iload means that 635 // the next bytecode is neither an iload or a caload, and therefore 636 // an iload pair. 637 __ cmpl(rbx, Bytecodes::_iload); 638 __ jcc(Assembler::equal, done); 639 640 __ cmpl(rbx, Bytecodes::_fast_iload); 641 __ movl(bc, Bytecodes::_fast_iload2); 642 643 __ jccb(Assembler::equal, rewrite); 644 645 // if _caload, rewrite to fast_icaload 646 __ cmpl(rbx, Bytecodes::_caload); 647 __ movl(bc, Bytecodes::_fast_icaload); 648 __ jccb(Assembler::equal, rewrite); 649 650 // rewrite so iload doesn't check again. 651 __ movl(bc, Bytecodes::_fast_iload); 652 653 // rewrite 654 // bc: fast bytecode 655 __ bind(rewrite); 656 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 657 __ bind(done); 658 } 659 660 // Get the local value into tos 661 locals_index(rbx); 662 __ movl(rax, iaddress(rbx)); 663 } 664 665 void TemplateTable::fast_iload2() { 666 transition(vtos, itos); 667 locals_index(rbx); 668 __ movl(rax, iaddress(rbx)); 669 __ push(itos); 670 locals_index(rbx, 3); 671 __ movl(rax, iaddress(rbx)); 672 } 673 674 void TemplateTable::fast_iload() { 675 transition(vtos, itos); 676 locals_index(rbx); 677 __ movl(rax, iaddress(rbx)); 678 } 679 680 void TemplateTable::lload() { 681 transition(vtos, ltos); 682 locals_index(rbx); 683 __ movptr(rax, laddress(rbx)); 684 NOT_LP64(__ movl(rdx, haddress(rbx))); 685 } 686 687 void TemplateTable::fload() { 688 transition(vtos, ftos); 689 locals_index(rbx); 690 __ load_float(faddress(rbx)); 691 } 692 693 void TemplateTable::dload() { 694 transition(vtos, dtos); 695 locals_index(rbx); 696 __ load_double(daddress(rbx)); 697 } 698 699 void TemplateTable::aload() { 700 transition(vtos, atos); 701 locals_index(rbx); 702 __ movptr(rax, aaddress(rbx)); 703 } 704 705 void TemplateTable::locals_index_wide(Register reg) { 706 __ load_unsigned_short(reg, at_bcp(2)); 707 __ bswapl(reg); 708 __ shrl(reg, 16); 709 __ negptr(reg); 710 } 711 712 void TemplateTable::wide_iload() { 713 transition(vtos, itos); 714 locals_index_wide(rbx); 715 __ movl(rax, iaddress(rbx)); 716 } 717 718 void TemplateTable::wide_lload() { 719 transition(vtos, ltos); 720 locals_index_wide(rbx); 721 __ movptr(rax, laddress(rbx)); 722 NOT_LP64(__ movl(rdx, haddress(rbx))); 723 } 724 725 void TemplateTable::wide_fload() { 726 transition(vtos, ftos); 727 locals_index_wide(rbx); 728 __ load_float(faddress(rbx)); 729 } 730 731 void TemplateTable::wide_dload() { 732 transition(vtos, dtos); 733 locals_index_wide(rbx); 734 __ load_double(daddress(rbx)); 735 } 736 737 void TemplateTable::wide_aload() { 738 transition(vtos, atos); 739 locals_index_wide(rbx); 740 __ movptr(rax, aaddress(rbx)); 741 } 742 743 void TemplateTable::index_check(Register array, Register index) { 744 // Pop ptr into array 745 __ pop_ptr(array); 746 index_check_without_pop(array, index); 747 } 748 749 void TemplateTable::index_check_without_pop(Register array, Register index) { 750 // destroys rbx 751 // check array 752 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 753 // sign extend index for use by indexed load 754 __ movl2ptr(index, index); 755 // check index 756 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 757 if (index != rbx) { 758 // ??? convention: move aberrant index into rbx for exception message 759 assert(rbx != array, "different registers"); 760 __ movl(rbx, index); 761 } 762 Label skip; 763 __ jccb(Assembler::below, skip); 764 // Pass array to create more detailed exceptions. 765 __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array); 766 __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 767 __ bind(skip); 768 } 769 770 void TemplateTable::iaload() { 771 transition(itos, itos); 772 // rax: index 773 // rdx: array 774 index_check(rdx, rax); // kills rbx 775 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 776 Address(rdx, rax, Address::times_4, 777 arrayOopDesc::base_offset_in_bytes(T_INT)), 778 noreg, noreg); 779 } 780 781 void TemplateTable::laload() { 782 transition(itos, ltos); 783 // rax: index 784 // rdx: array 785 index_check(rdx, rax); // kills rbx 786 NOT_LP64(__ mov(rbx, rax)); 787 // rbx,: index 788 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 789 Address(rdx, rbx, Address::times_8, 790 arrayOopDesc::base_offset_in_bytes(T_LONG)), 791 noreg, noreg); 792 } 793 794 795 796 void TemplateTable::faload() { 797 transition(itos, ftos); 798 // rax: index 799 // rdx: array 800 index_check(rdx, rax); // kills rbx 801 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 802 Address(rdx, rax, 803 Address::times_4, 804 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 805 noreg, noreg); 806 } 807 808 void TemplateTable::daload() { 809 transition(itos, dtos); 810 // rax: index 811 // rdx: array 812 index_check(rdx, rax); // kills rbx 813 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 814 Address(rdx, rax, 815 Address::times_8, 816 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 817 noreg, noreg); 818 } 819 820 void TemplateTable::aaload() { 821 transition(itos, atos); 822 // rax: index 823 // rdx: array 824 index_check(rdx, rax); // kills rbx 825 do_oop_load(_masm, 826 Address(rdx, rax, 827 UseCompressedOops ? Address::times_4 : Address::times_ptr, 828 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 829 rax, 830 IS_ARRAY); 831 } 832 833 void TemplateTable::baload() { 834 transition(itos, itos); 835 // rax: index 836 // rdx: array 837 index_check(rdx, rax); // kills rbx 838 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 839 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 840 noreg, noreg); 841 } 842 843 void TemplateTable::caload() { 844 transition(itos, itos); 845 // rax: index 846 // rdx: array 847 index_check(rdx, rax); // kills rbx 848 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 849 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 850 noreg, noreg); 851 } 852 853 // iload followed by caload frequent pair 854 void TemplateTable::fast_icaload() { 855 transition(vtos, itos); 856 // load index out of locals 857 locals_index(rbx); 858 __ movl(rax, iaddress(rbx)); 859 860 // rax: index 861 // rdx: array 862 index_check(rdx, rax); // kills rbx 863 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 864 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 865 noreg, noreg); 866 } 867 868 869 void TemplateTable::saload() { 870 transition(itos, itos); 871 // rax: index 872 // rdx: array 873 index_check(rdx, rax); // kills rbx 874 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 875 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 876 noreg, noreg); 877 } 878 879 void TemplateTable::iload(int n) { 880 transition(vtos, itos); 881 __ movl(rax, iaddress(n)); 882 } 883 884 void TemplateTable::lload(int n) { 885 transition(vtos, ltos); 886 __ movptr(rax, laddress(n)); 887 NOT_LP64(__ movptr(rdx, haddress(n))); 888 } 889 890 void TemplateTable::fload(int n) { 891 transition(vtos, ftos); 892 __ load_float(faddress(n)); 893 } 894 895 void TemplateTable::dload(int n) { 896 transition(vtos, dtos); 897 __ load_double(daddress(n)); 898 } 899 900 void TemplateTable::aload(int n) { 901 transition(vtos, atos); 902 __ movptr(rax, aaddress(n)); 903 } 904 905 void TemplateTable::aload_0() { 906 aload_0_internal(); 907 } 908 909 void TemplateTable::nofast_aload_0() { 910 aload_0_internal(may_not_rewrite); 911 } 912 913 void TemplateTable::aload_0_internal(RewriteControl rc) { 914 transition(vtos, atos); 915 // According to bytecode histograms, the pairs: 916 // 917 // _aload_0, _fast_igetfield 918 // _aload_0, _fast_agetfield 919 // _aload_0, _fast_fgetfield 920 // 921 // occur frequently. If RewriteFrequentPairs is set, the (slow) 922 // _aload_0 bytecode checks if the next bytecode is either 923 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 924 // rewrites the current bytecode into a pair bytecode; otherwise it 925 // rewrites the current bytecode into _fast_aload_0 that doesn't do 926 // the pair check anymore. 927 // 928 // Note: If the next bytecode is _getfield, the rewrite must be 929 // delayed, otherwise we may miss an opportunity for a pair. 930 // 931 // Also rewrite frequent pairs 932 // aload_0, aload_1 933 // aload_0, iload_1 934 // These bytecodes with a small amount of code are most profitable 935 // to rewrite 936 if (RewriteFrequentPairs && rc == may_rewrite) { 937 Label rewrite, done; 938 939 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 940 LP64_ONLY(assert(rbx != bc, "register damaged")); 941 942 // get next byte 943 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 944 945 // if _getfield then wait with rewrite 946 __ cmpl(rbx, Bytecodes::_getfield); 947 __ jcc(Assembler::equal, done); 948 949 // if _igetfield then rewrite to _fast_iaccess_0 950 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 951 __ cmpl(rbx, Bytecodes::_fast_igetfield); 952 __ movl(bc, Bytecodes::_fast_iaccess_0); 953 __ jccb(Assembler::equal, rewrite); 954 955 // if _agetfield then rewrite to _fast_aaccess_0 956 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 957 __ cmpl(rbx, Bytecodes::_fast_agetfield); 958 __ movl(bc, Bytecodes::_fast_aaccess_0); 959 __ jccb(Assembler::equal, rewrite); 960 961 // if _fgetfield then rewrite to _fast_faccess_0 962 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 963 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 964 __ movl(bc, Bytecodes::_fast_faccess_0); 965 __ jccb(Assembler::equal, rewrite); 966 967 // else rewrite to _fast_aload0 968 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 969 __ movl(bc, Bytecodes::_fast_aload_0); 970 971 // rewrite 972 // bc: fast bytecode 973 __ bind(rewrite); 974 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 975 976 __ bind(done); 977 } 978 979 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 980 aload(0); 981 } 982 983 void TemplateTable::istore() { 984 transition(itos, vtos); 985 locals_index(rbx); 986 __ movl(iaddress(rbx), rax); 987 } 988 989 990 void TemplateTable::lstore() { 991 transition(ltos, vtos); 992 locals_index(rbx); 993 __ movptr(laddress(rbx), rax); 994 NOT_LP64(__ movptr(haddress(rbx), rdx)); 995 } 996 997 void TemplateTable::fstore() { 998 transition(ftos, vtos); 999 locals_index(rbx); 1000 __ store_float(faddress(rbx)); 1001 } 1002 1003 void TemplateTable::dstore() { 1004 transition(dtos, vtos); 1005 locals_index(rbx); 1006 __ store_double(daddress(rbx)); 1007 } 1008 1009 void TemplateTable::astore() { 1010 transition(vtos, vtos); 1011 __ pop_ptr(rax); 1012 locals_index(rbx); 1013 __ movptr(aaddress(rbx), rax); 1014 } 1015 1016 void TemplateTable::wide_istore() { 1017 transition(vtos, vtos); 1018 __ pop_i(); 1019 locals_index_wide(rbx); 1020 __ movl(iaddress(rbx), rax); 1021 } 1022 1023 void TemplateTable::wide_lstore() { 1024 transition(vtos, vtos); 1025 NOT_LP64(__ pop_l(rax, rdx)); 1026 LP64_ONLY(__ pop_l()); 1027 locals_index_wide(rbx); 1028 __ movptr(laddress(rbx), rax); 1029 NOT_LP64(__ movl(haddress(rbx), rdx)); 1030 } 1031 1032 void TemplateTable::wide_fstore() { 1033 #ifdef _LP64 1034 transition(vtos, vtos); 1035 __ pop_f(xmm0); 1036 locals_index_wide(rbx); 1037 __ movflt(faddress(rbx), xmm0); 1038 #else 1039 wide_istore(); 1040 #endif 1041 } 1042 1043 void TemplateTable::wide_dstore() { 1044 #ifdef _LP64 1045 transition(vtos, vtos); 1046 __ pop_d(xmm0); 1047 locals_index_wide(rbx); 1048 __ movdbl(daddress(rbx), xmm0); 1049 #else 1050 wide_lstore(); 1051 #endif 1052 } 1053 1054 void TemplateTable::wide_astore() { 1055 transition(vtos, vtos); 1056 __ pop_ptr(rax); 1057 locals_index_wide(rbx); 1058 __ movptr(aaddress(rbx), rax); 1059 } 1060 1061 void TemplateTable::iastore() { 1062 transition(itos, vtos); 1063 __ pop_i(rbx); 1064 // rax: value 1065 // rbx: index 1066 // rdx: array 1067 index_check(rdx, rbx); // prefer index in rbx 1068 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1069 Address(rdx, rbx, Address::times_4, 1070 arrayOopDesc::base_offset_in_bytes(T_INT)), 1071 rax, noreg, noreg); 1072 } 1073 1074 void TemplateTable::lastore() { 1075 transition(ltos, vtos); 1076 __ pop_i(rbx); 1077 // rax,: low(value) 1078 // rcx: array 1079 // rdx: high(value) 1080 index_check(rcx, rbx); // prefer index in rbx, 1081 // rbx,: index 1082 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1083 Address(rcx, rbx, Address::times_8, 1084 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1085 noreg /* ltos */, noreg, noreg); 1086 } 1087 1088 1089 void TemplateTable::fastore() { 1090 transition(ftos, vtos); 1091 __ pop_i(rbx); 1092 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1093 // rbx: index 1094 // rdx: array 1095 index_check(rdx, rbx); // prefer index in rbx 1096 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1097 Address(rdx, rbx, Address::times_4, 1098 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1099 noreg /* ftos */, noreg, noreg); 1100 } 1101 1102 void TemplateTable::dastore() { 1103 transition(dtos, vtos); 1104 __ pop_i(rbx); 1105 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1106 // rbx: index 1107 // rdx: array 1108 index_check(rdx, rbx); // prefer index in rbx 1109 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1110 Address(rdx, rbx, Address::times_8, 1111 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1112 noreg /* dtos */, noreg, noreg); 1113 } 1114 1115 void TemplateTable::aastore() { 1116 Label is_null, ok_is_subtype, done; 1117 transition(vtos, vtos); 1118 // stack: ..., array, index, value 1119 __ movptr(rax, at_tos()); // value 1120 __ movl(rcx, at_tos_p1()); // index 1121 __ movptr(rdx, at_tos_p2()); // array 1122 1123 Address element_address(rdx, rcx, 1124 UseCompressedOops? Address::times_4 : Address::times_ptr, 1125 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1126 1127 index_check_without_pop(rdx, rcx); // kills rbx 1128 __ testptr(rax, rax); 1129 __ jcc(Assembler::zero, is_null); 1130 1131 // Move subklass into rbx 1132 __ load_klass(rbx, rax); 1133 // Move superklass into rax 1134 __ load_klass(rax, rdx); 1135 __ movptr(rax, Address(rax, 1136 ObjArrayKlass::element_klass_offset())); 1137 1138 // Generate subtype check. Blows rcx, rdi 1139 // Superklass in rax. Subklass in rbx. 1140 __ gen_subtype_check(rbx, ok_is_subtype); 1141 1142 // Come here on failure 1143 // object is at TOS 1144 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1145 1146 // Come here on success 1147 __ bind(ok_is_subtype); 1148 1149 // Get the value we will store 1150 __ movptr(rax, at_tos()); 1151 __ movl(rcx, at_tos_p1()); // index 1152 // Now store using the appropriate barrier 1153 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1154 __ jmp(done); 1155 1156 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 1157 __ bind(is_null); 1158 __ profile_null_seen(rbx); 1159 1160 // Store a NULL 1161 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1162 1163 // Pop stack arguments 1164 __ bind(done); 1165 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1166 } 1167 1168 void TemplateTable::bastore() { 1169 transition(itos, vtos); 1170 __ pop_i(rbx); 1171 // rax: value 1172 // rbx: index 1173 // rdx: array 1174 index_check(rdx, rbx); // prefer index in rbx 1175 // Need to check whether array is boolean or byte 1176 // since both types share the bastore bytecode. 1177 __ load_klass(rcx, rdx); 1178 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1179 int diffbit = Klass::layout_helper_boolean_diffbit(); 1180 __ testl(rcx, diffbit); 1181 Label L_skip; 1182 __ jccb(Assembler::zero, L_skip); 1183 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1184 __ bind(L_skip); 1185 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1186 Address(rdx, rbx,Address::times_1, 1187 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1188 rax, noreg, noreg); 1189 } 1190 1191 void TemplateTable::castore() { 1192 transition(itos, vtos); 1193 __ pop_i(rbx); 1194 // rax: value 1195 // rbx: index 1196 // rdx: array 1197 index_check(rdx, rbx); // prefer index in rbx 1198 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1199 Address(rdx, rbx, Address::times_2, 1200 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1201 rax, noreg, noreg); 1202 } 1203 1204 1205 void TemplateTable::sastore() { 1206 castore(); 1207 } 1208 1209 void TemplateTable::istore(int n) { 1210 transition(itos, vtos); 1211 __ movl(iaddress(n), rax); 1212 } 1213 1214 void TemplateTable::lstore(int n) { 1215 transition(ltos, vtos); 1216 __ movptr(laddress(n), rax); 1217 NOT_LP64(__ movptr(haddress(n), rdx)); 1218 } 1219 1220 void TemplateTable::fstore(int n) { 1221 transition(ftos, vtos); 1222 __ store_float(faddress(n)); 1223 } 1224 1225 void TemplateTable::dstore(int n) { 1226 transition(dtos, vtos); 1227 __ store_double(daddress(n)); 1228 } 1229 1230 1231 void TemplateTable::astore(int n) { 1232 transition(vtos, vtos); 1233 __ pop_ptr(rax); 1234 __ movptr(aaddress(n), rax); 1235 } 1236 1237 void TemplateTable::pop() { 1238 transition(vtos, vtos); 1239 __ addptr(rsp, Interpreter::stackElementSize); 1240 } 1241 1242 void TemplateTable::pop2() { 1243 transition(vtos, vtos); 1244 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1245 } 1246 1247 1248 void TemplateTable::dup() { 1249 transition(vtos, vtos); 1250 __ load_ptr(0, rax); 1251 __ push_ptr(rax); 1252 // stack: ..., a, a 1253 } 1254 1255 void TemplateTable::dup_x1() { 1256 transition(vtos, vtos); 1257 // stack: ..., a, b 1258 __ load_ptr( 0, rax); // load b 1259 __ load_ptr( 1, rcx); // load a 1260 __ store_ptr(1, rax); // store b 1261 __ store_ptr(0, rcx); // store a 1262 __ push_ptr(rax); // push b 1263 // stack: ..., b, a, b 1264 } 1265 1266 void TemplateTable::dup_x2() { 1267 transition(vtos, vtos); 1268 // stack: ..., a, b, c 1269 __ load_ptr( 0, rax); // load c 1270 __ load_ptr( 2, rcx); // load a 1271 __ store_ptr(2, rax); // store c in a 1272 __ push_ptr(rax); // push c 1273 // stack: ..., c, b, c, c 1274 __ load_ptr( 2, rax); // load b 1275 __ store_ptr(2, rcx); // store a in b 1276 // stack: ..., c, a, c, c 1277 __ store_ptr(1, rax); // store b in c 1278 // stack: ..., c, a, b, c 1279 } 1280 1281 void TemplateTable::dup2() { 1282 transition(vtos, vtos); 1283 // stack: ..., a, b 1284 __ load_ptr(1, rax); // load a 1285 __ push_ptr(rax); // push a 1286 __ load_ptr(1, rax); // load b 1287 __ push_ptr(rax); // push b 1288 // stack: ..., a, b, a, b 1289 } 1290 1291 1292 void TemplateTable::dup2_x1() { 1293 transition(vtos, vtos); 1294 // stack: ..., a, b, c 1295 __ load_ptr( 0, rcx); // load c 1296 __ load_ptr( 1, rax); // load b 1297 __ push_ptr(rax); // push b 1298 __ push_ptr(rcx); // push c 1299 // stack: ..., a, b, c, b, c 1300 __ store_ptr(3, rcx); // store c in b 1301 // stack: ..., a, c, c, b, c 1302 __ load_ptr( 4, rcx); // load a 1303 __ store_ptr(2, rcx); // store a in 2nd c 1304 // stack: ..., a, c, a, b, c 1305 __ store_ptr(4, rax); // store b in a 1306 // stack: ..., b, c, a, b, c 1307 } 1308 1309 void TemplateTable::dup2_x2() { 1310 transition(vtos, vtos); 1311 // stack: ..., a, b, c, d 1312 __ load_ptr( 0, rcx); // load d 1313 __ load_ptr( 1, rax); // load c 1314 __ push_ptr(rax); // push c 1315 __ push_ptr(rcx); // push d 1316 // stack: ..., a, b, c, d, c, d 1317 __ load_ptr( 4, rax); // load b 1318 __ store_ptr(2, rax); // store b in d 1319 __ store_ptr(4, rcx); // store d in b 1320 // stack: ..., a, d, c, b, c, d 1321 __ load_ptr( 5, rcx); // load a 1322 __ load_ptr( 3, rax); // load c 1323 __ store_ptr(3, rcx); // store a in c 1324 __ store_ptr(5, rax); // store c in a 1325 // stack: ..., c, d, a, b, c, d 1326 } 1327 1328 void TemplateTable::swap() { 1329 transition(vtos, vtos); 1330 // stack: ..., a, b 1331 __ load_ptr( 1, rcx); // load a 1332 __ load_ptr( 0, rax); // load b 1333 __ store_ptr(0, rcx); // store a in b 1334 __ store_ptr(1, rax); // store b in a 1335 // stack: ..., b, a 1336 } 1337 1338 void TemplateTable::iop2(Operation op) { 1339 transition(itos, itos); 1340 switch (op) { 1341 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1342 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1343 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1344 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1345 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1346 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1347 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1348 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1349 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1350 default : ShouldNotReachHere(); 1351 } 1352 } 1353 1354 void TemplateTable::lop2(Operation op) { 1355 transition(ltos, ltos); 1356 #ifdef _LP64 1357 switch (op) { 1358 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1359 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1360 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1361 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1362 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1363 default : ShouldNotReachHere(); 1364 } 1365 #else 1366 __ pop_l(rbx, rcx); 1367 switch (op) { 1368 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1369 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1370 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1371 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1372 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1373 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1374 default : ShouldNotReachHere(); 1375 } 1376 #endif 1377 } 1378 1379 void TemplateTable::idiv() { 1380 transition(itos, itos); 1381 __ movl(rcx, rax); 1382 __ pop_i(rax); 1383 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1384 // they are not equal, one could do a normal division (no correction 1385 // needed), which may speed up this implementation for the common case. 1386 // (see also JVM spec., p.243 & p.271) 1387 __ corrected_idivl(rcx); 1388 } 1389 1390 void TemplateTable::irem() { 1391 transition(itos, itos); 1392 __ movl(rcx, rax); 1393 __ pop_i(rax); 1394 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1395 // they are not equal, one could do a normal division (no correction 1396 // needed), which may speed up this implementation for the common case. 1397 // (see also JVM spec., p.243 & p.271) 1398 __ corrected_idivl(rcx); 1399 __ movl(rax, rdx); 1400 } 1401 1402 void TemplateTable::lmul() { 1403 transition(ltos, ltos); 1404 #ifdef _LP64 1405 __ pop_l(rdx); 1406 __ imulq(rax, rdx); 1407 #else 1408 __ pop_l(rbx, rcx); 1409 __ push(rcx); __ push(rbx); 1410 __ push(rdx); __ push(rax); 1411 __ lmul(2 * wordSize, 0); 1412 __ addptr(rsp, 4 * wordSize); // take off temporaries 1413 #endif 1414 } 1415 1416 void TemplateTable::ldiv() { 1417 transition(ltos, ltos); 1418 #ifdef _LP64 1419 __ mov(rcx, rax); 1420 __ pop_l(rax); 1421 // generate explicit div0 check 1422 __ testq(rcx, rcx); 1423 __ jump_cc(Assembler::zero, 1424 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1425 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1426 // they are not equal, one could do a normal division (no correction 1427 // needed), which may speed up this implementation for the common case. 1428 // (see also JVM spec., p.243 & p.271) 1429 __ corrected_idivq(rcx); // kills rbx 1430 #else 1431 __ pop_l(rbx, rcx); 1432 __ push(rcx); __ push(rbx); 1433 __ push(rdx); __ push(rax); 1434 // check if y = 0 1435 __ orl(rax, rdx); 1436 __ jump_cc(Assembler::zero, 1437 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1438 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1439 __ addptr(rsp, 4 * wordSize); // take off temporaries 1440 #endif 1441 } 1442 1443 void TemplateTable::lrem() { 1444 transition(ltos, ltos); 1445 #ifdef _LP64 1446 __ mov(rcx, rax); 1447 __ pop_l(rax); 1448 __ testq(rcx, rcx); 1449 __ jump_cc(Assembler::zero, 1450 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1451 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1452 // they are not equal, one could do a normal division (no correction 1453 // needed), which may speed up this implementation for the common case. 1454 // (see also JVM spec., p.243 & p.271) 1455 __ corrected_idivq(rcx); // kills rbx 1456 __ mov(rax, rdx); 1457 #else 1458 __ pop_l(rbx, rcx); 1459 __ push(rcx); __ push(rbx); 1460 __ push(rdx); __ push(rax); 1461 // check if y = 0 1462 __ orl(rax, rdx); 1463 __ jump_cc(Assembler::zero, 1464 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1465 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1466 __ addptr(rsp, 4 * wordSize); 1467 #endif 1468 } 1469 1470 void TemplateTable::lshl() { 1471 transition(itos, ltos); 1472 __ movl(rcx, rax); // get shift count 1473 #ifdef _LP64 1474 __ pop_l(rax); // get shift value 1475 __ shlq(rax); 1476 #else 1477 __ pop_l(rax, rdx); // get shift value 1478 __ lshl(rdx, rax); 1479 #endif 1480 } 1481 1482 void TemplateTable::lshr() { 1483 #ifdef _LP64 1484 transition(itos, ltos); 1485 __ movl(rcx, rax); // get shift count 1486 __ pop_l(rax); // get shift value 1487 __ sarq(rax); 1488 #else 1489 transition(itos, ltos); 1490 __ mov(rcx, rax); // get shift count 1491 __ pop_l(rax, rdx); // get shift value 1492 __ lshr(rdx, rax, true); 1493 #endif 1494 } 1495 1496 void TemplateTable::lushr() { 1497 transition(itos, ltos); 1498 #ifdef _LP64 1499 __ movl(rcx, rax); // get shift count 1500 __ pop_l(rax); // get shift value 1501 __ shrq(rax); 1502 #else 1503 __ mov(rcx, rax); // get shift count 1504 __ pop_l(rax, rdx); // get shift value 1505 __ lshr(rdx, rax); 1506 #endif 1507 } 1508 1509 void TemplateTable::fop2(Operation op) { 1510 transition(ftos, ftos); 1511 1512 if (UseSSE >= 1) { 1513 switch (op) { 1514 case add: 1515 __ addss(xmm0, at_rsp()); 1516 __ addptr(rsp, Interpreter::stackElementSize); 1517 break; 1518 case sub: 1519 __ movflt(xmm1, xmm0); 1520 __ pop_f(xmm0); 1521 __ subss(xmm0, xmm1); 1522 break; 1523 case mul: 1524 __ mulss(xmm0, at_rsp()); 1525 __ addptr(rsp, Interpreter::stackElementSize); 1526 break; 1527 case div: 1528 __ movflt(xmm1, xmm0); 1529 __ pop_f(xmm0); 1530 __ divss(xmm0, xmm1); 1531 break; 1532 case rem: 1533 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1534 // modulo operation. The frem method calls the function 1535 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1536 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1537 // (signalling or quiet) is returned. 1538 // 1539 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1540 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1541 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1542 // The fprem instruction used on x86_32 is functionally equivalent to 1543 // SharedRuntime::frem in that it returns a NaN. 1544 #ifdef _LP64 1545 __ movflt(xmm1, xmm0); 1546 __ pop_f(xmm0); 1547 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1548 #else 1549 __ push_f(xmm0); 1550 __ pop_f(); 1551 __ fld_s(at_rsp()); 1552 __ fremr(rax); 1553 __ f2ieee(); 1554 __ pop(rax); // pop second operand off the stack 1555 __ push_f(); 1556 __ pop_f(xmm0); 1557 #endif 1558 break; 1559 default: 1560 ShouldNotReachHere(); 1561 break; 1562 } 1563 } else { 1564 #ifdef _LP64 1565 ShouldNotReachHere(); 1566 #else 1567 switch (op) { 1568 case add: __ fadd_s (at_rsp()); break; 1569 case sub: __ fsubr_s(at_rsp()); break; 1570 case mul: __ fmul_s (at_rsp()); break; 1571 case div: __ fdivr_s(at_rsp()); break; 1572 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1573 default : ShouldNotReachHere(); 1574 } 1575 __ f2ieee(); 1576 __ pop(rax); // pop second operand off the stack 1577 #endif // _LP64 1578 } 1579 } 1580 1581 void TemplateTable::dop2(Operation op) { 1582 transition(dtos, dtos); 1583 if (UseSSE >= 2) { 1584 switch (op) { 1585 case add: 1586 __ addsd(xmm0, at_rsp()); 1587 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1588 break; 1589 case sub: 1590 __ movdbl(xmm1, xmm0); 1591 __ pop_d(xmm0); 1592 __ subsd(xmm0, xmm1); 1593 break; 1594 case mul: 1595 __ mulsd(xmm0, at_rsp()); 1596 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1597 break; 1598 case div: 1599 __ movdbl(xmm1, xmm0); 1600 __ pop_d(xmm0); 1601 __ divsd(xmm0, xmm1); 1602 break; 1603 case rem: 1604 // Similar to fop2(), the modulo operation is performed using the 1605 // SharedRuntime::drem method (on x86_64 platforms) or using the 1606 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1607 #ifdef _LP64 1608 __ movdbl(xmm1, xmm0); 1609 __ pop_d(xmm0); 1610 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1611 #else 1612 __ push_d(xmm0); 1613 __ pop_d(); 1614 __ fld_d(at_rsp()); 1615 __ fremr(rax); 1616 __ d2ieee(); 1617 __ pop(rax); 1618 __ pop(rdx); 1619 __ push_d(); 1620 __ pop_d(xmm0); 1621 #endif 1622 break; 1623 default: 1624 ShouldNotReachHere(); 1625 break; 1626 } 1627 } else { 1628 #ifdef _LP64 1629 ShouldNotReachHere(); 1630 #else 1631 switch (op) { 1632 case add: __ fadd_d (at_rsp()); break; 1633 case sub: __ fsubr_d(at_rsp()); break; 1634 case mul: { 1635 Label L_strict; 1636 Label L_join; 1637 const Address access_flags (rcx, Method::access_flags_offset()); 1638 __ get_method(rcx); 1639 __ movl(rcx, access_flags); 1640 __ testl(rcx, JVM_ACC_STRICT); 1641 __ jccb(Assembler::notZero, L_strict); 1642 __ fmul_d (at_rsp()); 1643 __ jmpb(L_join); 1644 __ bind(L_strict); 1645 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1646 __ fmulp(); 1647 __ fmul_d (at_rsp()); 1648 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1649 __ fmulp(); 1650 __ bind(L_join); 1651 break; 1652 } 1653 case div: { 1654 Label L_strict; 1655 Label L_join; 1656 const Address access_flags (rcx, Method::access_flags_offset()); 1657 __ get_method(rcx); 1658 __ movl(rcx, access_flags); 1659 __ testl(rcx, JVM_ACC_STRICT); 1660 __ jccb(Assembler::notZero, L_strict); 1661 __ fdivr_d(at_rsp()); 1662 __ jmp(L_join); 1663 __ bind(L_strict); 1664 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1665 __ fmul_d (at_rsp()); 1666 __ fdivrp(); 1667 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1668 __ fmulp(); 1669 __ bind(L_join); 1670 break; 1671 } 1672 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1673 default : ShouldNotReachHere(); 1674 } 1675 __ d2ieee(); 1676 // Pop double precision number from rsp. 1677 __ pop(rax); 1678 __ pop(rdx); 1679 #endif 1680 } 1681 } 1682 1683 void TemplateTable::ineg() { 1684 transition(itos, itos); 1685 __ negl(rax); 1686 } 1687 1688 void TemplateTable::lneg() { 1689 transition(ltos, ltos); 1690 LP64_ONLY(__ negq(rax)); 1691 NOT_LP64(__ lneg(rdx, rax)); 1692 } 1693 1694 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1695 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1696 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1697 // of 128-bits operands for SSE instructions. 1698 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1699 // Store the value to a 128-bits operand. 1700 operand[0] = lo; 1701 operand[1] = hi; 1702 return operand; 1703 } 1704 1705 // Buffer for 128-bits masks used by SSE instructions. 1706 static jlong float_signflip_pool[2*2]; 1707 static jlong double_signflip_pool[2*2]; 1708 1709 void TemplateTable::fneg() { 1710 transition(ftos, ftos); 1711 if (UseSSE >= 1) { 1712 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1713 __ xorps(xmm0, ExternalAddress((address) float_signflip)); 1714 } else { 1715 LP64_ONLY(ShouldNotReachHere()); 1716 NOT_LP64(__ fchs()); 1717 } 1718 } 1719 1720 void TemplateTable::dneg() { 1721 transition(dtos, dtos); 1722 if (UseSSE >= 2) { 1723 static jlong *double_signflip = 1724 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1725 __ xorpd(xmm0, ExternalAddress((address) double_signflip)); 1726 } else { 1727 #ifdef _LP64 1728 ShouldNotReachHere(); 1729 #else 1730 __ fchs(); 1731 #endif 1732 } 1733 } 1734 1735 void TemplateTable::iinc() { 1736 transition(vtos, vtos); 1737 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1738 locals_index(rbx); 1739 __ addl(iaddress(rbx), rdx); 1740 } 1741 1742 void TemplateTable::wide_iinc() { 1743 transition(vtos, vtos); 1744 __ movl(rdx, at_bcp(4)); // get constant 1745 locals_index_wide(rbx); 1746 __ bswapl(rdx); // swap bytes & sign-extend constant 1747 __ sarl(rdx, 16); 1748 __ addl(iaddress(rbx), rdx); 1749 // Note: should probably use only one movl to get both 1750 // the index and the constant -> fix this 1751 } 1752 1753 void TemplateTable::convert() { 1754 #ifdef _LP64 1755 // Checking 1756 #ifdef ASSERT 1757 { 1758 TosState tos_in = ilgl; 1759 TosState tos_out = ilgl; 1760 switch (bytecode()) { 1761 case Bytecodes::_i2l: // fall through 1762 case Bytecodes::_i2f: // fall through 1763 case Bytecodes::_i2d: // fall through 1764 case Bytecodes::_i2b: // fall through 1765 case Bytecodes::_i2c: // fall through 1766 case Bytecodes::_i2s: tos_in = itos; break; 1767 case Bytecodes::_l2i: // fall through 1768 case Bytecodes::_l2f: // fall through 1769 case Bytecodes::_l2d: tos_in = ltos; break; 1770 case Bytecodes::_f2i: // fall through 1771 case Bytecodes::_f2l: // fall through 1772 case Bytecodes::_f2d: tos_in = ftos; break; 1773 case Bytecodes::_d2i: // fall through 1774 case Bytecodes::_d2l: // fall through 1775 case Bytecodes::_d2f: tos_in = dtos; break; 1776 default : ShouldNotReachHere(); 1777 } 1778 switch (bytecode()) { 1779 case Bytecodes::_l2i: // fall through 1780 case Bytecodes::_f2i: // fall through 1781 case Bytecodes::_d2i: // fall through 1782 case Bytecodes::_i2b: // fall through 1783 case Bytecodes::_i2c: // fall through 1784 case Bytecodes::_i2s: tos_out = itos; break; 1785 case Bytecodes::_i2l: // fall through 1786 case Bytecodes::_f2l: // fall through 1787 case Bytecodes::_d2l: tos_out = ltos; break; 1788 case Bytecodes::_i2f: // fall through 1789 case Bytecodes::_l2f: // fall through 1790 case Bytecodes::_d2f: tos_out = ftos; break; 1791 case Bytecodes::_i2d: // fall through 1792 case Bytecodes::_l2d: // fall through 1793 case Bytecodes::_f2d: tos_out = dtos; break; 1794 default : ShouldNotReachHere(); 1795 } 1796 transition(tos_in, tos_out); 1797 } 1798 #endif // ASSERT 1799 1800 static const int64_t is_nan = 0x8000000000000000L; 1801 1802 // Conversion 1803 switch (bytecode()) { 1804 case Bytecodes::_i2l: 1805 __ movslq(rax, rax); 1806 break; 1807 case Bytecodes::_i2f: 1808 __ cvtsi2ssl(xmm0, rax); 1809 break; 1810 case Bytecodes::_i2d: 1811 __ cvtsi2sdl(xmm0, rax); 1812 break; 1813 case Bytecodes::_i2b: 1814 __ movsbl(rax, rax); 1815 break; 1816 case Bytecodes::_i2c: 1817 __ movzwl(rax, rax); 1818 break; 1819 case Bytecodes::_i2s: 1820 __ movswl(rax, rax); 1821 break; 1822 case Bytecodes::_l2i: 1823 __ movl(rax, rax); 1824 break; 1825 case Bytecodes::_l2f: 1826 __ cvtsi2ssq(xmm0, rax); 1827 break; 1828 case Bytecodes::_l2d: 1829 __ cvtsi2sdq(xmm0, rax); 1830 break; 1831 case Bytecodes::_f2i: 1832 { 1833 Label L; 1834 __ cvttss2sil(rax, xmm0); 1835 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1836 __ jcc(Assembler::notEqual, L); 1837 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1838 __ bind(L); 1839 } 1840 break; 1841 case Bytecodes::_f2l: 1842 { 1843 Label L; 1844 __ cvttss2siq(rax, xmm0); 1845 // NaN or overflow/underflow? 1846 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1847 __ jcc(Assembler::notEqual, L); 1848 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1849 __ bind(L); 1850 } 1851 break; 1852 case Bytecodes::_f2d: 1853 __ cvtss2sd(xmm0, xmm0); 1854 break; 1855 case Bytecodes::_d2i: 1856 { 1857 Label L; 1858 __ cvttsd2sil(rax, xmm0); 1859 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1860 __ jcc(Assembler::notEqual, L); 1861 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1862 __ bind(L); 1863 } 1864 break; 1865 case Bytecodes::_d2l: 1866 { 1867 Label L; 1868 __ cvttsd2siq(rax, xmm0); 1869 // NaN or overflow/underflow? 1870 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1871 __ jcc(Assembler::notEqual, L); 1872 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1873 __ bind(L); 1874 } 1875 break; 1876 case Bytecodes::_d2f: 1877 __ cvtsd2ss(xmm0, xmm0); 1878 break; 1879 default: 1880 ShouldNotReachHere(); 1881 } 1882 #else 1883 // Checking 1884 #ifdef ASSERT 1885 { TosState tos_in = ilgl; 1886 TosState tos_out = ilgl; 1887 switch (bytecode()) { 1888 case Bytecodes::_i2l: // fall through 1889 case Bytecodes::_i2f: // fall through 1890 case Bytecodes::_i2d: // fall through 1891 case Bytecodes::_i2b: // fall through 1892 case Bytecodes::_i2c: // fall through 1893 case Bytecodes::_i2s: tos_in = itos; break; 1894 case Bytecodes::_l2i: // fall through 1895 case Bytecodes::_l2f: // fall through 1896 case Bytecodes::_l2d: tos_in = ltos; break; 1897 case Bytecodes::_f2i: // fall through 1898 case Bytecodes::_f2l: // fall through 1899 case Bytecodes::_f2d: tos_in = ftos; break; 1900 case Bytecodes::_d2i: // fall through 1901 case Bytecodes::_d2l: // fall through 1902 case Bytecodes::_d2f: tos_in = dtos; break; 1903 default : ShouldNotReachHere(); 1904 } 1905 switch (bytecode()) { 1906 case Bytecodes::_l2i: // fall through 1907 case Bytecodes::_f2i: // fall through 1908 case Bytecodes::_d2i: // fall through 1909 case Bytecodes::_i2b: // fall through 1910 case Bytecodes::_i2c: // fall through 1911 case Bytecodes::_i2s: tos_out = itos; break; 1912 case Bytecodes::_i2l: // fall through 1913 case Bytecodes::_f2l: // fall through 1914 case Bytecodes::_d2l: tos_out = ltos; break; 1915 case Bytecodes::_i2f: // fall through 1916 case Bytecodes::_l2f: // fall through 1917 case Bytecodes::_d2f: tos_out = ftos; break; 1918 case Bytecodes::_i2d: // fall through 1919 case Bytecodes::_l2d: // fall through 1920 case Bytecodes::_f2d: tos_out = dtos; break; 1921 default : ShouldNotReachHere(); 1922 } 1923 transition(tos_in, tos_out); 1924 } 1925 #endif // ASSERT 1926 1927 // Conversion 1928 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1929 switch (bytecode()) { 1930 case Bytecodes::_i2l: 1931 __ extend_sign(rdx, rax); 1932 break; 1933 case Bytecodes::_i2f: 1934 if (UseSSE >= 1) { 1935 __ cvtsi2ssl(xmm0, rax); 1936 } else { 1937 __ push(rax); // store int on tos 1938 __ fild_s(at_rsp()); // load int to ST0 1939 __ f2ieee(); // truncate to float size 1940 __ pop(rcx); // adjust rsp 1941 } 1942 break; 1943 case Bytecodes::_i2d: 1944 if (UseSSE >= 2) { 1945 __ cvtsi2sdl(xmm0, rax); 1946 } else { 1947 __ push(rax); // add one slot for d2ieee() 1948 __ push(rax); // store int on tos 1949 __ fild_s(at_rsp()); // load int to ST0 1950 __ d2ieee(); // truncate to double size 1951 __ pop(rcx); // adjust rsp 1952 __ pop(rcx); 1953 } 1954 break; 1955 case Bytecodes::_i2b: 1956 __ shll(rax, 24); // truncate upper 24 bits 1957 __ sarl(rax, 24); // and sign-extend byte 1958 LP64_ONLY(__ movsbl(rax, rax)); 1959 break; 1960 case Bytecodes::_i2c: 1961 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1962 LP64_ONLY(__ movzwl(rax, rax)); 1963 break; 1964 case Bytecodes::_i2s: 1965 __ shll(rax, 16); // truncate upper 16 bits 1966 __ sarl(rax, 16); // and sign-extend short 1967 LP64_ONLY(__ movswl(rax, rax)); 1968 break; 1969 case Bytecodes::_l2i: 1970 /* nothing to do */ 1971 break; 1972 case Bytecodes::_l2f: 1973 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 1974 // 64-bit long values to floats. On 32-bit platforms it is not possible 1975 // to use that instruction with 64-bit operands, therefore the FPU is 1976 // used to perform the conversion. 1977 __ push(rdx); // store long on tos 1978 __ push(rax); 1979 __ fild_d(at_rsp()); // load long to ST0 1980 __ f2ieee(); // truncate to float size 1981 __ pop(rcx); // adjust rsp 1982 __ pop(rcx); 1983 if (UseSSE >= 1) { 1984 __ push_f(); 1985 __ pop_f(xmm0); 1986 } 1987 break; 1988 case Bytecodes::_l2d: 1989 // On 32-bit platforms the FPU is used for conversion because on 1990 // 32-bit platforms it is not not possible to use the cvtsi2sdq 1991 // instruction with 64-bit operands. 1992 __ push(rdx); // store long on tos 1993 __ push(rax); 1994 __ fild_d(at_rsp()); // load long to ST0 1995 __ d2ieee(); // truncate to double size 1996 __ pop(rcx); // adjust rsp 1997 __ pop(rcx); 1998 if (UseSSE >= 2) { 1999 __ push_d(); 2000 __ pop_d(xmm0); 2001 } 2002 break; 2003 case Bytecodes::_f2i: 2004 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 2005 // as it returns 0 for any NaN. 2006 if (UseSSE >= 1) { 2007 __ push_f(xmm0); 2008 } else { 2009 __ push(rcx); // reserve space for argument 2010 __ fstp_s(at_rsp()); // pass float argument on stack 2011 } 2012 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 2013 break; 2014 case Bytecodes::_f2l: 2015 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 2016 // as it returns 0 for any NaN. 2017 if (UseSSE >= 1) { 2018 __ push_f(xmm0); 2019 } else { 2020 __ push(rcx); // reserve space for argument 2021 __ fstp_s(at_rsp()); // pass float argument on stack 2022 } 2023 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 2024 break; 2025 case Bytecodes::_f2d: 2026 if (UseSSE < 1) { 2027 /* nothing to do */ 2028 } else if (UseSSE == 1) { 2029 __ push_f(xmm0); 2030 __ pop_f(); 2031 } else { // UseSSE >= 2 2032 __ cvtss2sd(xmm0, xmm0); 2033 } 2034 break; 2035 case Bytecodes::_d2i: 2036 if (UseSSE >= 2) { 2037 __ push_d(xmm0); 2038 } else { 2039 __ push(rcx); // reserve space for argument 2040 __ push(rcx); 2041 __ fstp_d(at_rsp()); // pass double argument on stack 2042 } 2043 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 2044 break; 2045 case Bytecodes::_d2l: 2046 if (UseSSE >= 2) { 2047 __ push_d(xmm0); 2048 } else { 2049 __ push(rcx); // reserve space for argument 2050 __ push(rcx); 2051 __ fstp_d(at_rsp()); // pass double argument on stack 2052 } 2053 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 2054 break; 2055 case Bytecodes::_d2f: 2056 if (UseSSE <= 1) { 2057 __ push(rcx); // reserve space for f2ieee() 2058 __ f2ieee(); // truncate to float size 2059 __ pop(rcx); // adjust rsp 2060 if (UseSSE == 1) { 2061 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 2062 // the conversion is performed using the FPU in this case. 2063 __ push_f(); 2064 __ pop_f(xmm0); 2065 } 2066 } else { // UseSSE >= 2 2067 __ cvtsd2ss(xmm0, xmm0); 2068 } 2069 break; 2070 default : 2071 ShouldNotReachHere(); 2072 } 2073 #endif 2074 } 2075 2076 void TemplateTable::lcmp() { 2077 transition(ltos, itos); 2078 #ifdef _LP64 2079 Label done; 2080 __ pop_l(rdx); 2081 __ cmpq(rdx, rax); 2082 __ movl(rax, -1); 2083 __ jccb(Assembler::less, done); 2084 __ setb(Assembler::notEqual, rax); 2085 __ movzbl(rax, rax); 2086 __ bind(done); 2087 #else 2088 2089 // y = rdx:rax 2090 __ pop_l(rbx, rcx); // get x = rcx:rbx 2091 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 2092 __ mov(rax, rcx); 2093 #endif 2094 } 2095 2096 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 2097 if ((is_float && UseSSE >= 1) || 2098 (!is_float && UseSSE >= 2)) { 2099 Label done; 2100 if (is_float) { 2101 // XXX get rid of pop here, use ... reg, mem32 2102 __ pop_f(xmm1); 2103 __ ucomiss(xmm1, xmm0); 2104 } else { 2105 // XXX get rid of pop here, use ... reg, mem64 2106 __ pop_d(xmm1); 2107 __ ucomisd(xmm1, xmm0); 2108 } 2109 if (unordered_result < 0) { 2110 __ movl(rax, -1); 2111 __ jccb(Assembler::parity, done); 2112 __ jccb(Assembler::below, done); 2113 __ setb(Assembler::notEqual, rdx); 2114 __ movzbl(rax, rdx); 2115 } else { 2116 __ movl(rax, 1); 2117 __ jccb(Assembler::parity, done); 2118 __ jccb(Assembler::above, done); 2119 __ movl(rax, 0); 2120 __ jccb(Assembler::equal, done); 2121 __ decrementl(rax); 2122 } 2123 __ bind(done); 2124 } else { 2125 #ifdef _LP64 2126 ShouldNotReachHere(); 2127 #else 2128 if (is_float) { 2129 __ fld_s(at_rsp()); 2130 } else { 2131 __ fld_d(at_rsp()); 2132 __ pop(rdx); 2133 } 2134 __ pop(rcx); 2135 __ fcmp2int(rax, unordered_result < 0); 2136 #endif // _LP64 2137 } 2138 } 2139 2140 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2141 __ get_method(rcx); // rcx holds method 2142 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2143 // holds bumped taken count 2144 2145 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2146 InvocationCounter::counter_offset(); 2147 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2148 InvocationCounter::counter_offset(); 2149 2150 // Load up edx with the branch displacement 2151 if (is_wide) { 2152 __ movl(rdx, at_bcp(1)); 2153 } else { 2154 __ load_signed_short(rdx, at_bcp(1)); 2155 } 2156 __ bswapl(rdx); 2157 2158 if (!is_wide) { 2159 __ sarl(rdx, 16); 2160 } 2161 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2162 2163 // Handle all the JSR stuff here, then exit. 2164 // It's much shorter and cleaner than intermingling with the non-JSR 2165 // normal-branch stuff occurring below. 2166 if (is_jsr) { 2167 // Pre-load the next target bytecode into rbx 2168 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2169 2170 // compute return address as bci in rax 2171 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2172 in_bytes(ConstMethod::codes_offset()))); 2173 __ subptr(rax, Address(rcx, Method::const_offset())); 2174 // Adjust the bcp in r13 by the displacement in rdx 2175 __ addptr(rbcp, rdx); 2176 // jsr returns atos that is not an oop 2177 __ push_i(rax); 2178 __ dispatch_only(vtos, true); 2179 return; 2180 } 2181 2182 // Normal (non-jsr) branch handling 2183 2184 // Adjust the bcp in r13 by the displacement in rdx 2185 __ addptr(rbcp, rdx); 2186 2187 assert(UseLoopCounter || !UseOnStackReplacement, 2188 "on-stack-replacement requires loop counters"); 2189 Label backedge_counter_overflow; 2190 Label profile_method; 2191 Label dispatch; 2192 if (UseLoopCounter) { 2193 // increment backedge counter for backward branches 2194 // rax: MDO 2195 // rbx: MDO bumped taken-count 2196 // rcx: method 2197 // rdx: target offset 2198 // r13: target bcp 2199 // r14: locals pointer 2200 __ testl(rdx, rdx); // check if forward or backward branch 2201 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2202 2203 // check if MethodCounters exists 2204 Label has_counters; 2205 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2206 __ testptr(rax, rax); 2207 __ jcc(Assembler::notZero, has_counters); 2208 __ push(rdx); 2209 __ push(rcx); 2210 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2211 rcx); 2212 __ pop(rcx); 2213 __ pop(rdx); 2214 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2215 __ testptr(rax, rax); 2216 __ jcc(Assembler::zero, dispatch); 2217 __ bind(has_counters); 2218 2219 if (TieredCompilation) { 2220 Label no_mdo; 2221 int increment = InvocationCounter::count_increment; 2222 if (ProfileInterpreter) { 2223 // Are we profiling? 2224 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2225 __ testptr(rbx, rbx); 2226 __ jccb(Assembler::zero, no_mdo); 2227 // Increment the MDO backedge counter 2228 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2229 in_bytes(InvocationCounter::counter_offset())); 2230 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2231 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, rax, false, Assembler::zero, 2232 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 2233 __ jmp(dispatch); 2234 } 2235 __ bind(no_mdo); 2236 // Increment backedge counter in MethodCounters* 2237 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2238 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2239 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 2240 rax, false, Assembler::zero, 2241 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 2242 } else { // not TieredCompilation 2243 // increment counter 2244 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2245 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 2246 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 2247 __ movl(Address(rcx, be_offset), rax); // store counter 2248 2249 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 2250 2251 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 2252 __ addl(rax, Address(rcx, be_offset)); // add both counters 2253 2254 if (ProfileInterpreter) { 2255 // Test to see if we should create a method data oop 2256 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); 2257 __ jcc(Assembler::less, dispatch); 2258 2259 // if no method data exists, go to profile method 2260 __ test_method_data_pointer(rax, profile_method); 2261 2262 if (UseOnStackReplacement) { 2263 // check for overflow against rbx which is the MDO taken count 2264 __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 2265 __ jcc(Assembler::below, dispatch); 2266 2267 // When ProfileInterpreter is on, the backedge_count comes 2268 // from the MethodData*, which value does not get reset on 2269 // the call to frequency_counter_overflow(). To avoid 2270 // excessive calls to the overflow routine while the method is 2271 // being compiled, add a second test to make sure the overflow 2272 // function is called only once every overflow_frequency. 2273 const int overflow_frequency = 1024; 2274 __ andl(rbx, overflow_frequency - 1); 2275 __ jcc(Assembler::zero, backedge_counter_overflow); 2276 2277 } 2278 } else { 2279 if (UseOnStackReplacement) { 2280 // check for overflow against rax, which is the sum of the 2281 // counters 2282 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 2283 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 2284 2285 } 2286 } 2287 } 2288 __ bind(dispatch); 2289 } 2290 2291 // Pre-load the next target bytecode into rbx 2292 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2293 2294 // continue with the bytecode @ target 2295 // rax: return bci for jsr's, unused otherwise 2296 // rbx: target bytecode 2297 // r13: target bcp 2298 __ dispatch_only(vtos, true); 2299 2300 if (UseLoopCounter) { 2301 if (ProfileInterpreter) { 2302 // Out-of-line code to allocate method data oop. 2303 __ bind(profile_method); 2304 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 2305 __ set_method_data_pointer_for_bcp(); 2306 __ jmp(dispatch); 2307 } 2308 2309 if (UseOnStackReplacement) { 2310 // invocation counter overflow 2311 __ bind(backedge_counter_overflow); 2312 __ negptr(rdx); 2313 __ addptr(rdx, rbcp); // branch bcp 2314 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2315 __ call_VM(noreg, 2316 CAST_FROM_FN_PTR(address, 2317 InterpreterRuntime::frequency_counter_overflow), 2318 rdx); 2319 2320 // rax: osr nmethod (osr ok) or NULL (osr not possible) 2321 // rdx: scratch 2322 // r14: locals pointer 2323 // r13: bcp 2324 __ testptr(rax, rax); // test result 2325 __ jcc(Assembler::zero, dispatch); // no osr if null 2326 // nmethod may have been invalidated (VM may block upon call_VM return) 2327 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2328 __ jcc(Assembler::notEqual, dispatch); 2329 2330 // We have the address of an on stack replacement routine in rax. 2331 // In preparation of invoking it, first we must migrate the locals 2332 // and monitors from off the interpreter frame on the stack. 2333 // Ensure to save the osr nmethod over the migration call, 2334 // it will be preserved in rbx. 2335 __ mov(rbx, rax); 2336 2337 NOT_LP64(__ get_thread(rcx)); 2338 2339 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2340 2341 // rax is OSR buffer, move it to expected parameter location 2342 LP64_ONLY(__ mov(j_rarg0, rax)); 2343 NOT_LP64(__ mov(rcx, rax)); 2344 // We use j_rarg definitions here so that registers don't conflict as parameter 2345 // registers change across platforms as we are in the midst of a calling 2346 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2347 2348 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2349 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2350 2351 // pop the interpreter frame 2352 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2353 __ leave(); // remove frame anchor 2354 __ pop(retaddr); // get return address 2355 __ mov(rsp, sender_sp); // set sp to sender sp 2356 // Ensure compiled code always sees stack at proper alignment 2357 __ andptr(rsp, -(StackAlignmentInBytes)); 2358 2359 // unlike x86 we need no specialized return from compiled code 2360 // to the interpreter or the call stub. 2361 2362 // push the return address 2363 __ push(retaddr); 2364 2365 // and begin the OSR nmethod 2366 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 2367 } 2368 } 2369 } 2370 2371 void TemplateTable::if_0cmp(Condition cc) { 2372 transition(itos, vtos); 2373 // assume branch is more often taken than not (loops use backward branches) 2374 Label not_taken; 2375 __ testl(rax, rax); 2376 __ jcc(j_not(cc), not_taken); 2377 branch(false, false); 2378 __ bind(not_taken); 2379 __ profile_not_taken_branch(rax); 2380 } 2381 2382 void TemplateTable::if_icmp(Condition cc) { 2383 transition(itos, vtos); 2384 // assume branch is more often taken than not (loops use backward branches) 2385 Label not_taken; 2386 __ pop_i(rdx); 2387 __ cmpl(rdx, rax); 2388 __ jcc(j_not(cc), not_taken); 2389 branch(false, false); 2390 __ bind(not_taken); 2391 __ profile_not_taken_branch(rax); 2392 } 2393 2394 void TemplateTable::if_nullcmp(Condition cc) { 2395 transition(atos, vtos); 2396 // assume branch is more often taken than not (loops use backward branches) 2397 Label not_taken; 2398 __ testptr(rax, rax); 2399 __ jcc(j_not(cc), not_taken); 2400 branch(false, false); 2401 __ bind(not_taken); 2402 __ profile_not_taken_branch(rax); 2403 } 2404 2405 void TemplateTable::if_acmp(Condition cc) { 2406 transition(atos, vtos); 2407 // assume branch is more often taken than not (loops use backward branches) 2408 Label not_taken; 2409 __ pop_ptr(rdx); 2410 __ cmpoop(rdx, rax); 2411 __ jcc(j_not(cc), not_taken); 2412 branch(false, false); 2413 __ bind(not_taken); 2414 __ profile_not_taken_branch(rax); 2415 } 2416 2417 void TemplateTable::ret() { 2418 transition(vtos, vtos); 2419 locals_index(rbx); 2420 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2421 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2422 __ profile_ret(rbx, rcx); 2423 __ get_method(rax); 2424 __ movptr(rbcp, Address(rax, Method::const_offset())); 2425 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2426 ConstMethod::codes_offset())); 2427 __ dispatch_next(vtos, 0, true); 2428 } 2429 2430 void TemplateTable::wide_ret() { 2431 transition(vtos, vtos); 2432 locals_index_wide(rbx); 2433 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2434 __ profile_ret(rbx, rcx); 2435 __ get_method(rax); 2436 __ movptr(rbcp, Address(rax, Method::const_offset())); 2437 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2438 __ dispatch_next(vtos, 0, true); 2439 } 2440 2441 void TemplateTable::tableswitch() { 2442 Label default_case, continue_execution; 2443 transition(itos, vtos); 2444 2445 // align r13/rsi 2446 __ lea(rbx, at_bcp(BytesPerInt)); 2447 __ andptr(rbx, -BytesPerInt); 2448 // load lo & hi 2449 __ movl(rcx, Address(rbx, BytesPerInt)); 2450 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2451 __ bswapl(rcx); 2452 __ bswapl(rdx); 2453 // check against lo & hi 2454 __ cmpl(rax, rcx); 2455 __ jcc(Assembler::less, default_case); 2456 __ cmpl(rax, rdx); 2457 __ jcc(Assembler::greater, default_case); 2458 // lookup dispatch offset 2459 __ subl(rax, rcx); 2460 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2461 __ profile_switch_case(rax, rbx, rcx); 2462 // continue execution 2463 __ bind(continue_execution); 2464 __ bswapl(rdx); 2465 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2466 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2467 __ addptr(rbcp, rdx); 2468 __ dispatch_only(vtos, true); 2469 // handle default 2470 __ bind(default_case); 2471 __ profile_switch_default(rax); 2472 __ movl(rdx, Address(rbx, 0)); 2473 __ jmp(continue_execution); 2474 } 2475 2476 void TemplateTable::lookupswitch() { 2477 transition(itos, itos); 2478 __ stop("lookupswitch bytecode should have been rewritten"); 2479 } 2480 2481 void TemplateTable::fast_linearswitch() { 2482 transition(itos, vtos); 2483 Label loop_entry, loop, found, continue_execution; 2484 // bswap rax so we can avoid bswapping the table entries 2485 __ bswapl(rax); 2486 // align r13 2487 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2488 // this instruction (change offsets 2489 // below) 2490 __ andptr(rbx, -BytesPerInt); 2491 // set counter 2492 __ movl(rcx, Address(rbx, BytesPerInt)); 2493 __ bswapl(rcx); 2494 __ jmpb(loop_entry); 2495 // table search 2496 __ bind(loop); 2497 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2498 __ jcc(Assembler::equal, found); 2499 __ bind(loop_entry); 2500 __ decrementl(rcx); 2501 __ jcc(Assembler::greaterEqual, loop); 2502 // default case 2503 __ profile_switch_default(rax); 2504 __ movl(rdx, Address(rbx, 0)); 2505 __ jmp(continue_execution); 2506 // entry found -> get offset 2507 __ bind(found); 2508 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2509 __ profile_switch_case(rcx, rax, rbx); 2510 // continue execution 2511 __ bind(continue_execution); 2512 __ bswapl(rdx); 2513 __ movl2ptr(rdx, rdx); 2514 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2515 __ addptr(rbcp, rdx); 2516 __ dispatch_only(vtos, true); 2517 } 2518 2519 void TemplateTable::fast_binaryswitch() { 2520 transition(itos, vtos); 2521 // Implementation using the following core algorithm: 2522 // 2523 // int binary_search(int key, LookupswitchPair* array, int n) { 2524 // // Binary search according to "Methodik des Programmierens" by 2525 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2526 // int i = 0; 2527 // int j = n; 2528 // while (i+1 < j) { 2529 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2530 // // with Q: for all i: 0 <= i < n: key < a[i] 2531 // // where a stands for the array and assuming that the (inexisting) 2532 // // element a[n] is infinitely big. 2533 // int h = (i + j) >> 1; 2534 // // i < h < j 2535 // if (key < array[h].fast_match()) { 2536 // j = h; 2537 // } else { 2538 // i = h; 2539 // } 2540 // } 2541 // // R: a[i] <= key < a[i+1] or Q 2542 // // (i.e., if key is within array, i is the correct index) 2543 // return i; 2544 // } 2545 2546 // Register allocation 2547 const Register key = rax; // already set (tosca) 2548 const Register array = rbx; 2549 const Register i = rcx; 2550 const Register j = rdx; 2551 const Register h = rdi; 2552 const Register temp = rsi; 2553 2554 // Find array start 2555 NOT_LP64(__ save_bcp()); 2556 2557 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2558 // get rid of this 2559 // instruction (change 2560 // offsets below) 2561 __ andptr(array, -BytesPerInt); 2562 2563 // Initialize i & j 2564 __ xorl(i, i); // i = 0; 2565 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2566 2567 // Convert j into native byteordering 2568 __ bswapl(j); 2569 2570 // And start 2571 Label entry; 2572 __ jmp(entry); 2573 2574 // binary search loop 2575 { 2576 Label loop; 2577 __ bind(loop); 2578 // int h = (i + j) >> 1; 2579 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2580 __ sarl(h, 1); // h = (i + j) >> 1; 2581 // if (key < array[h].fast_match()) { 2582 // j = h; 2583 // } else { 2584 // i = h; 2585 // } 2586 // Convert array[h].match to native byte-ordering before compare 2587 __ movl(temp, Address(array, h, Address::times_8)); 2588 __ bswapl(temp); 2589 __ cmpl(key, temp); 2590 // j = h if (key < array[h].fast_match()) 2591 __ cmov32(Assembler::less, j, h); 2592 // i = h if (key >= array[h].fast_match()) 2593 __ cmov32(Assembler::greaterEqual, i, h); 2594 // while (i+1 < j) 2595 __ bind(entry); 2596 __ leal(h, Address(i, 1)); // i+1 2597 __ cmpl(h, j); // i+1 < j 2598 __ jcc(Assembler::less, loop); 2599 } 2600 2601 // end of binary search, result index is i (must check again!) 2602 Label default_case; 2603 // Convert array[i].match to native byte-ordering before compare 2604 __ movl(temp, Address(array, i, Address::times_8)); 2605 __ bswapl(temp); 2606 __ cmpl(key, temp); 2607 __ jcc(Assembler::notEqual, default_case); 2608 2609 // entry found -> j = offset 2610 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2611 __ profile_switch_case(i, key, array); 2612 __ bswapl(j); 2613 LP64_ONLY(__ movslq(j, j)); 2614 2615 NOT_LP64(__ restore_bcp()); 2616 NOT_LP64(__ restore_locals()); // restore rdi 2617 2618 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2619 __ addptr(rbcp, j); 2620 __ dispatch_only(vtos, true); 2621 2622 // default case -> j = default offset 2623 __ bind(default_case); 2624 __ profile_switch_default(i); 2625 __ movl(j, Address(array, -2 * BytesPerInt)); 2626 __ bswapl(j); 2627 LP64_ONLY(__ movslq(j, j)); 2628 2629 NOT_LP64(__ restore_bcp()); 2630 NOT_LP64(__ restore_locals()); 2631 2632 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2633 __ addptr(rbcp, j); 2634 __ dispatch_only(vtos, true); 2635 } 2636 2637 void TemplateTable::_return(TosState state) { 2638 transition(state, state); 2639 2640 assert(_desc->calls_vm(), 2641 "inconsistent calls_vm information"); // call in remove_activation 2642 2643 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2644 assert(state == vtos, "only valid state"); 2645 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2646 __ movptr(robj, aaddress(0)); 2647 __ load_klass(rdi, robj); 2648 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2649 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2650 Label skip_register_finalizer; 2651 __ jcc(Assembler::zero, skip_register_finalizer); 2652 2653 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2654 2655 __ bind(skip_register_finalizer); 2656 } 2657 2658 if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) { 2659 Label no_safepoint; 2660 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2661 #ifdef _LP64 2662 __ testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit()); 2663 #else 2664 const Register thread = rdi; 2665 __ get_thread(thread); 2666 __ testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit()); 2667 #endif 2668 __ jcc(Assembler::zero, no_safepoint); 2669 __ push(state); 2670 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2671 InterpreterRuntime::at_safepoint)); 2672 __ pop(state); 2673 __ bind(no_safepoint); 2674 } 2675 2676 // Narrow result if state is itos but result type is smaller. 2677 // Need to narrow in the return bytecode rather than in generate_return_entry 2678 // since compiled code callers expect the result to already be narrowed. 2679 if (state == itos) { 2680 __ narrow(rax); 2681 } 2682 __ remove_activation(state, rbcp); 2683 2684 __ jmp(rbcp); 2685 } 2686 2687 // ---------------------------------------------------------------------------- 2688 // Volatile variables demand their effects be made known to all CPU's 2689 // in order. Store buffers on most chips allow reads & writes to 2690 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2691 // without some kind of memory barrier (i.e., it's not sufficient that 2692 // the interpreter does not reorder volatile references, the hardware 2693 // also must not reorder them). 2694 // 2695 // According to the new Java Memory Model (JMM): 2696 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2697 // writes act as aquire & release, so: 2698 // (2) A read cannot let unrelated NON-volatile memory refs that 2699 // happen after the read float up to before the read. It's OK for 2700 // non-volatile memory refs that happen before the volatile read to 2701 // float down below it. 2702 // (3) Similar a volatile write cannot let unrelated NON-volatile 2703 // memory refs that happen BEFORE the write float down to after the 2704 // write. It's OK for non-volatile memory refs that happen after the 2705 // volatile write to float up before it. 2706 // 2707 // We only put in barriers around volatile refs (they are expensive), 2708 // not _between_ memory refs (that would require us to track the 2709 // flavor of the previous memory refs). Requirements (2) and (3) 2710 // require some barriers before volatile stores and after volatile 2711 // loads. These nearly cover requirement (1) but miss the 2712 // volatile-store-volatile-load case. This final case is placed after 2713 // volatile-stores although it could just as well go before 2714 // volatile-loads. 2715 2716 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2717 // Helper function to insert a is-volatile test and memory barrier 2718 __ membar(order_constraint); 2719 } 2720 2721 void TemplateTable::resolve_cache_and_index(int byte_no, 2722 Register cache, 2723 Register index, 2724 size_t index_size) { 2725 const Register temp = rbx; 2726 assert_different_registers(cache, index, temp); 2727 2728 Label L_clinit_barrier_slow; 2729 Label resolved; 2730 2731 Bytecodes::Code code = bytecode(); 2732 switch (code) { 2733 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2734 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2735 default: break; 2736 } 2737 2738 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2739 __ get_cache_and_index_and_bytecode_at_bcp(cache, index, temp, byte_no, 1, index_size); 2740 __ cmpl(temp, code); // have we resolved this bytecode? 2741 __ jcc(Assembler::equal, resolved); 2742 2743 // resolve first time through 2744 // Class initialization barrier slow path lands here as well. 2745 __ bind(L_clinit_barrier_slow); 2746 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2747 __ movl(temp, code); 2748 __ call_VM(noreg, entry, temp); 2749 // Update registers with resolved info 2750 __ get_cache_and_index_at_bcp(cache, index, 1, index_size); 2751 2752 __ bind(resolved); 2753 2754 // Class initialization barrier for static methods 2755 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2756 const Register method = temp; 2757 const Register klass = temp; 2758 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 2759 assert(thread != noreg, "x86_32 not supported"); 2760 2761 __ load_resolved_method_at_index(byte_no, method, cache, index); 2762 __ load_method_holder(klass, method); 2763 __ clinit_barrier(klass, thread, NULL /*L_fast_path*/, &L_clinit_barrier_slow); 2764 } 2765 } 2766 2767 // The cache and index registers must be set before call 2768 void TemplateTable::load_field_cp_cache_entry(Register obj, 2769 Register cache, 2770 Register index, 2771 Register off, 2772 Register flags, 2773 bool is_static = false) { 2774 assert_different_registers(cache, index, flags, off); 2775 2776 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2777 // Field offset 2778 __ movptr(off, Address(cache, index, Address::times_ptr, 2779 in_bytes(cp_base_offset + 2780 ConstantPoolCacheEntry::f2_offset()))); 2781 // Flags 2782 __ movl(flags, Address(cache, index, Address::times_ptr, 2783 in_bytes(cp_base_offset + 2784 ConstantPoolCacheEntry::flags_offset()))); 2785 2786 // klass overwrite register 2787 if (is_static) { 2788 __ movptr(obj, Address(cache, index, Address::times_ptr, 2789 in_bytes(cp_base_offset + 2790 ConstantPoolCacheEntry::f1_offset()))); 2791 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2792 __ movptr(obj, Address(obj, mirror_offset)); 2793 __ resolve_oop_handle(obj); 2794 } 2795 } 2796 2797 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2798 Register method, 2799 Register itable_index, 2800 Register flags, 2801 bool is_invokevirtual, 2802 bool is_invokevfinal, /*unused*/ 2803 bool is_invokedynamic) { 2804 // setup registers 2805 const Register cache = rcx; 2806 const Register index = rdx; 2807 assert_different_registers(method, flags); 2808 assert_different_registers(method, cache, index); 2809 assert_different_registers(itable_index, flags); 2810 assert_different_registers(itable_index, cache, index); 2811 // determine constant pool cache field offsets 2812 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2813 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2814 ConstantPoolCacheEntry::flags_offset()); 2815 // access constant pool cache fields 2816 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2817 ConstantPoolCacheEntry::f2_offset()); 2818 2819 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2820 resolve_cache_and_index(byte_no, cache, index, index_size); 2821 __ load_resolved_method_at_index(byte_no, method, cache, index); 2822 2823 if (itable_index != noreg) { 2824 // pick up itable or appendix index from f2 also: 2825 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2826 } 2827 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2828 } 2829 2830 // The registers cache and index expected to be set before call. 2831 // Correct values of the cache and index registers are preserved. 2832 void TemplateTable::jvmti_post_field_access(Register cache, 2833 Register index, 2834 bool is_static, 2835 bool has_tos) { 2836 if (JvmtiExport::can_post_field_access()) { 2837 // Check to see if a field access watch has been set before we take 2838 // the time to call into the VM. 2839 Label L1; 2840 assert_different_registers(cache, index, rax); 2841 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2842 __ testl(rax,rax); 2843 __ jcc(Assembler::zero, L1); 2844 2845 // cache entry pointer 2846 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2847 __ shll(index, LogBytesPerWord); 2848 __ addptr(cache, index); 2849 if (is_static) { 2850 __ xorptr(rax, rax); // NULL object reference 2851 } else { 2852 __ pop(atos); // Get the object 2853 __ verify_oop(rax); 2854 __ push(atos); // Restore stack state 2855 } 2856 // rax,: object pointer or NULL 2857 // cache: cache entry pointer 2858 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2859 rax, cache); 2860 __ get_cache_and_index_at_bcp(cache, index, 1); 2861 __ bind(L1); 2862 } 2863 } 2864 2865 void TemplateTable::pop_and_check_object(Register r) { 2866 __ pop_ptr(r); 2867 __ null_check(r); // for field access must check obj. 2868 __ verify_oop(r); 2869 } 2870 2871 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2872 transition(vtos, vtos); 2873 2874 const Register cache = rcx; 2875 const Register index = rdx; 2876 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2877 const Register off = rbx; 2878 const Register flags = rax; 2879 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 2880 2881 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2882 jvmti_post_field_access(cache, index, is_static, false); 2883 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2884 2885 if (!is_static) pop_and_check_object(obj); 2886 2887 const Address field(obj, off, Address::times_1, 0*wordSize); 2888 2889 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj; 2890 2891 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2892 // Make sure we don't need to mask edx after the above shift 2893 assert(btos == 0, "change code, btos != 0"); 2894 2895 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2896 2897 __ jcc(Assembler::notZero, notByte); 2898 // btos 2899 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 2900 __ push(btos); 2901 // Rewrite bytecode to be faster 2902 if (!is_static && rc == may_rewrite) { 2903 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2904 } 2905 __ jmp(Done); 2906 2907 __ bind(notByte); 2908 __ cmpl(flags, ztos); 2909 __ jcc(Assembler::notEqual, notBool); 2910 2911 // ztos (same code as btos) 2912 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg); 2913 __ push(ztos); 2914 // Rewrite bytecode to be faster 2915 if (!is_static && rc == may_rewrite) { 2916 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2917 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2918 } 2919 __ jmp(Done); 2920 2921 __ bind(notBool); 2922 __ cmpl(flags, atos); 2923 __ jcc(Assembler::notEqual, notObj); 2924 // atos 2925 do_oop_load(_masm, field, rax); 2926 __ push(atos); 2927 if (!is_static && rc == may_rewrite) { 2928 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2929 } 2930 __ jmp(Done); 2931 2932 __ bind(notObj); 2933 __ cmpl(flags, itos); 2934 __ jcc(Assembler::notEqual, notInt); 2935 // itos 2936 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 2937 __ push(itos); 2938 // Rewrite bytecode to be faster 2939 if (!is_static && rc == may_rewrite) { 2940 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2941 } 2942 __ jmp(Done); 2943 2944 __ bind(notInt); 2945 __ cmpl(flags, ctos); 2946 __ jcc(Assembler::notEqual, notChar); 2947 // ctos 2948 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 2949 __ push(ctos); 2950 // Rewrite bytecode to be faster 2951 if (!is_static && rc == may_rewrite) { 2952 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2953 } 2954 __ jmp(Done); 2955 2956 __ bind(notChar); 2957 __ cmpl(flags, stos); 2958 __ jcc(Assembler::notEqual, notShort); 2959 // stos 2960 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 2961 __ push(stos); 2962 // Rewrite bytecode to be faster 2963 if (!is_static && rc == may_rewrite) { 2964 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2965 } 2966 __ jmp(Done); 2967 2968 __ bind(notShort); 2969 __ cmpl(flags, ltos); 2970 __ jcc(Assembler::notEqual, notLong); 2971 // ltos 2972 // Generate code as if volatile (x86_32). There just aren't enough registers to 2973 // save that information and this code is faster than the test. 2974 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg); 2975 __ push(ltos); 2976 // Rewrite bytecode to be faster 2977 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 2978 __ jmp(Done); 2979 2980 __ bind(notLong); 2981 __ cmpl(flags, ftos); 2982 __ jcc(Assembler::notEqual, notFloat); 2983 // ftos 2984 2985 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2986 __ push(ftos); 2987 // Rewrite bytecode to be faster 2988 if (!is_static && rc == may_rewrite) { 2989 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2990 } 2991 __ jmp(Done); 2992 2993 __ bind(notFloat); 2994 #ifdef ASSERT 2995 Label notDouble; 2996 __ cmpl(flags, dtos); 2997 __ jcc(Assembler::notEqual, notDouble); 2998 #endif 2999 // dtos 3000 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3001 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg); 3002 __ push(dtos); 3003 // Rewrite bytecode to be faster 3004 if (!is_static && rc == may_rewrite) { 3005 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 3006 } 3007 #ifdef ASSERT 3008 __ jmp(Done); 3009 3010 __ bind(notDouble); 3011 __ stop("Bad state"); 3012 #endif 3013 3014 __ bind(Done); 3015 // [jk] not needed currently 3016 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 3017 // Assembler::LoadStore)); 3018 } 3019 3020 void TemplateTable::getfield(int byte_no) { 3021 getfield_or_static(byte_no, false); 3022 } 3023 3024 void TemplateTable::nofast_getfield(int byte_no) { 3025 getfield_or_static(byte_no, false, may_not_rewrite); 3026 } 3027 3028 void TemplateTable::getstatic(int byte_no) { 3029 getfield_or_static(byte_no, true); 3030 } 3031 3032 3033 // The registers cache and index expected to be set before call. 3034 // The function may destroy various registers, just not the cache and index registers. 3035 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 3036 3037 const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax); 3038 const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 3039 const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3040 const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx); 3041 3042 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 3043 3044 if (JvmtiExport::can_post_field_modification()) { 3045 // Check to see if a field modification watch has been set before 3046 // we take the time to call into the VM. 3047 Label L1; 3048 assert_different_registers(cache, index, rax); 3049 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3050 __ testl(rax, rax); 3051 __ jcc(Assembler::zero, L1); 3052 3053 __ get_cache_and_index_at_bcp(robj, RDX, 1); 3054 3055 3056 if (is_static) { 3057 // Life is simple. Null out the object pointer. 3058 __ xorl(RBX, RBX); 3059 3060 } else { 3061 // Life is harder. The stack holds the value on top, followed by 3062 // the object. We don't know the size of the value, though; it 3063 // could be one or two words depending on its type. As a result, 3064 // we must find the type to determine where the object is. 3065 #ifndef _LP64 3066 Label two_word, valsize_known; 3067 #endif 3068 __ movl(RCX, Address(robj, RDX, 3069 Address::times_ptr, 3070 in_bytes(cp_base_offset + 3071 ConstantPoolCacheEntry::flags_offset()))); 3072 NOT_LP64(__ mov(rbx, rsp)); 3073 __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift); 3074 3075 // Make sure we don't need to mask rcx after the above shift 3076 ConstantPoolCacheEntry::verify_tos_state_shift(); 3077 #ifdef _LP64 3078 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 3079 __ cmpl(c_rarg3, ltos); 3080 __ cmovptr(Assembler::equal, 3081 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 3082 __ cmpl(c_rarg3, dtos); 3083 __ cmovptr(Assembler::equal, 3084 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 3085 #else 3086 __ cmpl(rcx, ltos); 3087 __ jccb(Assembler::equal, two_word); 3088 __ cmpl(rcx, dtos); 3089 __ jccb(Assembler::equal, two_word); 3090 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 3091 __ jmpb(valsize_known); 3092 3093 __ bind(two_word); 3094 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 3095 3096 __ bind(valsize_known); 3097 // setup object pointer 3098 __ movptr(rbx, Address(rbx, 0)); 3099 #endif 3100 } 3101 // cache entry pointer 3102 __ addptr(robj, in_bytes(cp_base_offset)); 3103 __ shll(RDX, LogBytesPerWord); 3104 __ addptr(robj, RDX); 3105 // object (tos) 3106 __ mov(RCX, rsp); 3107 // c_rarg1: object pointer set up above (NULL if static) 3108 // c_rarg2: cache entry pointer 3109 // c_rarg3: jvalue object on the stack 3110 __ call_VM(noreg, 3111 CAST_FROM_FN_PTR(address, 3112 InterpreterRuntime::post_field_modification), 3113 RBX, robj, RCX); 3114 __ get_cache_and_index_at_bcp(cache, index, 1); 3115 __ bind(L1); 3116 } 3117 } 3118 3119 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 3120 transition(vtos, vtos); 3121 3122 const Register cache = rcx; 3123 const Register index = rdx; 3124 const Register obj = rcx; 3125 const Register off = rbx; 3126 const Register flags = rax; 3127 3128 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 3129 jvmti_post_field_mod(cache, index, is_static); 3130 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 3131 3132 // [jk] not needed currently 3133 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3134 // Assembler::StoreStore)); 3135 3136 Label notVolatile, Done; 3137 __ movl(rdx, flags); 3138 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3139 __ andl(rdx, 0x1); 3140 3141 // Check for volatile store 3142 __ testl(rdx, rdx); 3143 __ jcc(Assembler::zero, notVolatile); 3144 3145 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags); 3146 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3147 Assembler::StoreStore)); 3148 __ jmp(Done); 3149 __ bind(notVolatile); 3150 3151 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags); 3152 3153 __ bind(Done); 3154 } 3155 3156 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 3157 Register obj, Register off, Register flags) { 3158 3159 // field addresses 3160 const Address field(obj, off, Address::times_1, 0*wordSize); 3161 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) 3162 3163 Label notByte, notBool, notInt, notShort, notChar, 3164 notLong, notFloat, notObj; 3165 Label Done; 3166 3167 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3168 3169 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3170 3171 assert(btos == 0, "change code, btos != 0"); 3172 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 3173 __ jcc(Assembler::notZero, notByte); 3174 3175 // btos 3176 { 3177 __ pop(btos); 3178 if (!is_static) pop_and_check_object(obj); 3179 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg); 3180 if (!is_static && rc == may_rewrite) { 3181 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3182 } 3183 __ jmp(Done); 3184 } 3185 3186 __ bind(notByte); 3187 __ cmpl(flags, ztos); 3188 __ jcc(Assembler::notEqual, notBool); 3189 3190 // ztos 3191 { 3192 __ pop(ztos); 3193 if (!is_static) pop_and_check_object(obj); 3194 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg); 3195 if (!is_static && rc == may_rewrite) { 3196 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 3197 } 3198 __ jmp(Done); 3199 } 3200 3201 __ bind(notBool); 3202 __ cmpl(flags, atos); 3203 __ jcc(Assembler::notEqual, notObj); 3204 3205 // atos 3206 { 3207 __ pop(atos); 3208 if (!is_static) pop_and_check_object(obj); 3209 // Store into the field 3210 do_oop_store(_masm, field, rax); 3211 if (!is_static && rc == may_rewrite) { 3212 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3213 } 3214 __ jmp(Done); 3215 } 3216 3217 __ bind(notObj); 3218 __ cmpl(flags, itos); 3219 __ jcc(Assembler::notEqual, notInt); 3220 3221 // itos 3222 { 3223 __ pop(itos); 3224 if (!is_static) pop_and_check_object(obj); 3225 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg); 3226 if (!is_static && rc == may_rewrite) { 3227 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3228 } 3229 __ jmp(Done); 3230 } 3231 3232 __ bind(notInt); 3233 __ cmpl(flags, ctos); 3234 __ jcc(Assembler::notEqual, notChar); 3235 3236 // ctos 3237 { 3238 __ pop(ctos); 3239 if (!is_static) pop_and_check_object(obj); 3240 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg); 3241 if (!is_static && rc == may_rewrite) { 3242 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3243 } 3244 __ jmp(Done); 3245 } 3246 3247 __ bind(notChar); 3248 __ cmpl(flags, stos); 3249 __ jcc(Assembler::notEqual, notShort); 3250 3251 // stos 3252 { 3253 __ pop(stos); 3254 if (!is_static) pop_and_check_object(obj); 3255 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg); 3256 if (!is_static && rc == may_rewrite) { 3257 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3258 } 3259 __ jmp(Done); 3260 } 3261 3262 __ bind(notShort); 3263 __ cmpl(flags, ltos); 3264 __ jcc(Assembler::notEqual, notLong); 3265 3266 // ltos 3267 { 3268 __ pop(ltos); 3269 if (!is_static) pop_and_check_object(obj); 3270 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 3271 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg); 3272 #ifdef _LP64 3273 if (!is_static && rc == may_rewrite) { 3274 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3275 } 3276 #endif // _LP64 3277 __ jmp(Done); 3278 } 3279 3280 __ bind(notLong); 3281 __ cmpl(flags, ftos); 3282 __ jcc(Assembler::notEqual, notFloat); 3283 3284 // ftos 3285 { 3286 __ pop(ftos); 3287 if (!is_static) pop_and_check_object(obj); 3288 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg); 3289 if (!is_static && rc == may_rewrite) { 3290 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3291 } 3292 __ jmp(Done); 3293 } 3294 3295 __ bind(notFloat); 3296 #ifdef ASSERT 3297 Label notDouble; 3298 __ cmpl(flags, dtos); 3299 __ jcc(Assembler::notEqual, notDouble); 3300 #endif 3301 3302 // dtos 3303 { 3304 __ pop(dtos); 3305 if (!is_static) pop_and_check_object(obj); 3306 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3307 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg); 3308 if (!is_static && rc == may_rewrite) { 3309 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3310 } 3311 } 3312 3313 #ifdef ASSERT 3314 __ jmp(Done); 3315 3316 __ bind(notDouble); 3317 __ stop("Bad state"); 3318 #endif 3319 3320 __ bind(Done); 3321 } 3322 3323 void TemplateTable::putfield(int byte_no) { 3324 putfield_or_static(byte_no, false); 3325 } 3326 3327 void TemplateTable::nofast_putfield(int byte_no) { 3328 putfield_or_static(byte_no, false, may_not_rewrite); 3329 } 3330 3331 void TemplateTable::putstatic(int byte_no) { 3332 putfield_or_static(byte_no, true); 3333 } 3334 3335 void TemplateTable::jvmti_post_fast_field_mod() { 3336 3337 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3338 3339 if (JvmtiExport::can_post_field_modification()) { 3340 // Check to see if a field modification watch has been set before 3341 // we take the time to call into the VM. 3342 Label L2; 3343 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3344 __ testl(scratch, scratch); 3345 __ jcc(Assembler::zero, L2); 3346 __ pop_ptr(rbx); // copy the object pointer from tos 3347 __ verify_oop(rbx); 3348 __ push_ptr(rbx); // put the object pointer back on tos 3349 // Save tos values before call_VM() clobbers them. Since we have 3350 // to do it for every data type, we use the saved values as the 3351 // jvalue object. 3352 switch (bytecode()) { // load values into the jvalue object 3353 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3354 case Bytecodes::_fast_bputfield: // fall through 3355 case Bytecodes::_fast_zputfield: // fall through 3356 case Bytecodes::_fast_sputfield: // fall through 3357 case Bytecodes::_fast_cputfield: // fall through 3358 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3359 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3360 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3361 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3362 3363 default: 3364 ShouldNotReachHere(); 3365 } 3366 __ mov(scratch, rsp); // points to jvalue on the stack 3367 // access constant pool cache entry 3368 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1)); 3369 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1)); 3370 __ verify_oop(rbx); 3371 // rbx: object pointer copied above 3372 // c_rarg2: cache entry pointer 3373 // c_rarg3: jvalue object on the stack 3374 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3375 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3376 3377 switch (bytecode()) { // restore tos values 3378 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3379 case Bytecodes::_fast_bputfield: // fall through 3380 case Bytecodes::_fast_zputfield: // fall through 3381 case Bytecodes::_fast_sputfield: // fall through 3382 case Bytecodes::_fast_cputfield: // fall through 3383 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3384 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3385 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3386 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3387 default: break; 3388 } 3389 __ bind(L2); 3390 } 3391 } 3392 3393 void TemplateTable::fast_storefield(TosState state) { 3394 transition(state, vtos); 3395 3396 ByteSize base = ConstantPoolCache::base_offset(); 3397 3398 jvmti_post_fast_field_mod(); 3399 3400 // access constant pool cache 3401 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3402 3403 // test for volatile with rdx but rdx is tos register for lputfield. 3404 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, 3405 in_bytes(base + 3406 ConstantPoolCacheEntry::flags_offset()))); 3407 3408 // replace index with field offset from cache entry 3409 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3410 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 3411 3412 // [jk] not needed currently 3413 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3414 // Assembler::StoreStore)); 3415 3416 Label notVolatile, Done; 3417 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3418 __ andl(rdx, 0x1); 3419 3420 // Get object from stack 3421 pop_and_check_object(rcx); 3422 3423 // field address 3424 const Address field(rcx, rbx, Address::times_1); 3425 3426 // Check for volatile store 3427 __ testl(rdx, rdx); 3428 __ jcc(Assembler::zero, notVolatile); 3429 3430 fast_storefield_helper(field, rax); 3431 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3432 Assembler::StoreStore)); 3433 __ jmp(Done); 3434 __ bind(notVolatile); 3435 3436 fast_storefield_helper(field, rax); 3437 3438 __ bind(Done); 3439 } 3440 3441 void TemplateTable::fast_storefield_helper(Address field, Register rax) { 3442 3443 // access field 3444 switch (bytecode()) { 3445 case Bytecodes::_fast_aputfield: 3446 do_oop_store(_masm, field, rax); 3447 break; 3448 case Bytecodes::_fast_lputfield: 3449 #ifdef _LP64 3450 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg); 3451 #else 3452 __ stop("should not be rewritten"); 3453 #endif 3454 break; 3455 case Bytecodes::_fast_iputfield: 3456 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg); 3457 break; 3458 case Bytecodes::_fast_zputfield: 3459 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg); 3460 break; 3461 case Bytecodes::_fast_bputfield: 3462 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg); 3463 break; 3464 case Bytecodes::_fast_sputfield: 3465 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg); 3466 break; 3467 case Bytecodes::_fast_cputfield: 3468 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg); 3469 break; 3470 case Bytecodes::_fast_fputfield: 3471 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg); 3472 break; 3473 case Bytecodes::_fast_dputfield: 3474 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg); 3475 break; 3476 default: 3477 ShouldNotReachHere(); 3478 } 3479 } 3480 3481 void TemplateTable::fast_accessfield(TosState state) { 3482 transition(atos, state); 3483 3484 // Do the JVMTI work here to avoid disturbing the register state below 3485 if (JvmtiExport::can_post_field_access()) { 3486 // Check to see if a field access watch has been set before we 3487 // take the time to call into the VM. 3488 Label L1; 3489 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3490 __ testl(rcx, rcx); 3491 __ jcc(Assembler::zero, L1); 3492 // access constant pool cache entry 3493 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1)); 3494 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1)); 3495 __ verify_oop(rax); 3496 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3497 LP64_ONLY(__ mov(c_rarg1, rax)); 3498 // c_rarg1: object pointer copied above 3499 // c_rarg2: cache entry pointer 3500 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3501 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3502 __ pop_ptr(rax); // restore object pointer 3503 __ bind(L1); 3504 } 3505 3506 // access constant pool cache 3507 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3508 // replace index with field offset from cache entry 3509 // [jk] not needed currently 3510 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 3511 // in_bytes(ConstantPoolCache::base_offset() + 3512 // ConstantPoolCacheEntry::flags_offset()))); 3513 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3514 // __ andl(rdx, 0x1); 3515 // 3516 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3517 in_bytes(ConstantPoolCache::base_offset() + 3518 ConstantPoolCacheEntry::f2_offset()))); 3519 3520 // rax: object 3521 __ verify_oop(rax); 3522 __ null_check(rax); 3523 Address field(rax, rbx, Address::times_1); 3524 3525 // access field 3526 switch (bytecode()) { 3527 case Bytecodes::_fast_agetfield: 3528 do_oop_load(_masm, field, rax); 3529 __ verify_oop(rax); 3530 break; 3531 case Bytecodes::_fast_lgetfield: 3532 #ifdef _LP64 3533 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg); 3534 #else 3535 __ stop("should not be rewritten"); 3536 #endif 3537 break; 3538 case Bytecodes::_fast_igetfield: 3539 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3540 break; 3541 case Bytecodes::_fast_bgetfield: 3542 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3543 break; 3544 case Bytecodes::_fast_sgetfield: 3545 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3546 break; 3547 case Bytecodes::_fast_cgetfield: 3548 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3549 break; 3550 case Bytecodes::_fast_fgetfield: 3551 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3552 break; 3553 case Bytecodes::_fast_dgetfield: 3554 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3555 break; 3556 default: 3557 ShouldNotReachHere(); 3558 } 3559 // [jk] not needed currently 3560 // Label notVolatile; 3561 // __ testl(rdx, rdx); 3562 // __ jcc(Assembler::zero, notVolatile); 3563 // __ membar(Assembler::LoadLoad); 3564 // __ bind(notVolatile); 3565 } 3566 3567 void TemplateTable::fast_xaccess(TosState state) { 3568 transition(vtos, state); 3569 3570 // get receiver 3571 __ movptr(rax, aaddress(0)); 3572 // access constant pool cache 3573 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 3574 __ movptr(rbx, 3575 Address(rcx, rdx, Address::times_ptr, 3576 in_bytes(ConstantPoolCache::base_offset() + 3577 ConstantPoolCacheEntry::f2_offset()))); 3578 // make sure exception is reported in correct bcp range (getfield is 3579 // next instruction) 3580 __ increment(rbcp); 3581 __ null_check(rax); 3582 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3583 switch (state) { 3584 case itos: 3585 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3586 break; 3587 case atos: 3588 do_oop_load(_masm, field, rax); 3589 __ verify_oop(rax); 3590 break; 3591 case ftos: 3592 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3593 break; 3594 default: 3595 ShouldNotReachHere(); 3596 } 3597 3598 // [jk] not needed currently 3599 // Label notVolatile; 3600 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3601 // in_bytes(ConstantPoolCache::base_offset() + 3602 // ConstantPoolCacheEntry::flags_offset()))); 3603 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3604 // __ testl(rdx, 0x1); 3605 // __ jcc(Assembler::zero, notVolatile); 3606 // __ membar(Assembler::LoadLoad); 3607 // __ bind(notVolatile); 3608 3609 __ decrement(rbcp); 3610 } 3611 3612 //----------------------------------------------------------------------------- 3613 // Calls 3614 3615 void TemplateTable::count_calls(Register method, Register temp) { 3616 // implemented elsewhere 3617 ShouldNotReachHere(); 3618 } 3619 3620 void TemplateTable::prepare_invoke(int byte_no, 3621 Register method, // linked method (or i-klass) 3622 Register index, // itable index, MethodType, etc. 3623 Register recv, // if caller wants to see it 3624 Register flags // if caller wants to test it 3625 ) { 3626 // determine flags 3627 const Bytecodes::Code code = bytecode(); 3628 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3629 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3630 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3631 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3632 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3633 const bool load_receiver = (recv != noreg); 3634 const bool save_flags = (flags != noreg); 3635 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3636 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3637 assert(flags == noreg || flags == rdx, ""); 3638 assert(recv == noreg || recv == rcx, ""); 3639 3640 // setup registers & access constant pool cache 3641 if (recv == noreg) recv = rcx; 3642 if (flags == noreg) flags = rdx; 3643 assert_different_registers(method, index, recv, flags); 3644 3645 // save 'interpreter return address' 3646 __ save_bcp(); 3647 3648 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3649 3650 // maybe push appendix to arguments (just before return address) 3651 if (is_invokedynamic || is_invokehandle) { 3652 Label L_no_push; 3653 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3654 __ jcc(Assembler::zero, L_no_push); 3655 // Push the appendix as a trailing parameter. 3656 // This must be done before we get the receiver, 3657 // since the parameter_size includes it. 3658 __ push(rbx); 3659 __ mov(rbx, index); 3660 __ load_resolved_reference_at_index(index, rbx); 3661 __ pop(rbx); 3662 __ push(index); // push appendix (MethodType, CallSite, etc.) 3663 __ bind(L_no_push); 3664 } 3665 3666 // load receiver if needed (after appendix is pushed so parameter size is correct) 3667 // Note: no return address pushed yet 3668 if (load_receiver) { 3669 __ movl(recv, flags); 3670 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3671 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3672 const int receiver_is_at_end = -1; // back off one slot to get receiver 3673 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3674 __ movptr(recv, recv_addr); 3675 __ verify_oop(recv); 3676 } 3677 3678 if (save_flags) { 3679 __ movl(rbcp, flags); 3680 } 3681 3682 // compute return type 3683 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3684 // Make sure we don't need to mask flags after the above shift 3685 ConstantPoolCacheEntry::verify_tos_state_shift(); 3686 // load return address 3687 { 3688 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3689 ExternalAddress table(table_addr); 3690 LP64_ONLY(__ lea(rscratch1, table)); 3691 LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr))); 3692 NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)))); 3693 } 3694 3695 // push return address 3696 __ push(flags); 3697 3698 // Restore flags value from the constant pool cache, and restore rsi 3699 // for later null checks. r13 is the bytecode pointer 3700 if (save_flags) { 3701 __ movl(flags, rbcp); 3702 __ restore_bcp(); 3703 } 3704 } 3705 3706 void TemplateTable::invokevirtual_helper(Register index, 3707 Register recv, 3708 Register flags) { 3709 // Uses temporary registers rax, rdx 3710 assert_different_registers(index, recv, rax, rdx); 3711 assert(index == rbx, ""); 3712 assert(recv == rcx, ""); 3713 3714 // Test for an invoke of a final method 3715 Label notFinal; 3716 __ movl(rax, flags); 3717 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3718 __ jcc(Assembler::zero, notFinal); 3719 3720 const Register method = index; // method must be rbx 3721 assert(method == rbx, 3722 "Method* must be rbx for interpreter calling convention"); 3723 3724 // do the call - the index is actually the method to call 3725 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3726 3727 // It's final, need a null check here! 3728 __ null_check(recv); 3729 3730 // profile this call 3731 __ profile_final_call(rax); 3732 __ profile_arguments_type(rax, method, rbcp, true); 3733 3734 __ jump_from_interpreted(method, rax); 3735 3736 __ bind(notFinal); 3737 3738 // get receiver klass 3739 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 3740 __ load_klass(rax, recv); 3741 3742 // profile this call 3743 __ profile_virtual_call(rax, rlocals, rdx); 3744 // get target Method* & entry point 3745 __ lookup_virtual_method(rax, index, method); 3746 __ profile_called_method(method, rdx, rbcp); 3747 3748 __ profile_arguments_type(rdx, method, rbcp, true); 3749 __ jump_from_interpreted(method, rdx); 3750 } 3751 3752 void TemplateTable::invokevirtual(int byte_no) { 3753 transition(vtos, vtos); 3754 assert(byte_no == f2_byte, "use this argument"); 3755 prepare_invoke(byte_no, 3756 rbx, // method or vtable index 3757 noreg, // unused itable index 3758 rcx, rdx); // recv, flags 3759 3760 // rbx: index 3761 // rcx: receiver 3762 // rdx: flags 3763 3764 invokevirtual_helper(rbx, rcx, rdx); 3765 } 3766 3767 void TemplateTable::invokespecial(int byte_no) { 3768 transition(vtos, vtos); 3769 assert(byte_no == f1_byte, "use this argument"); 3770 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3771 rcx); // get receiver also for null check 3772 __ verify_oop(rcx); 3773 __ null_check(rcx); 3774 // do the call 3775 __ profile_call(rax); 3776 __ profile_arguments_type(rax, rbx, rbcp, false); 3777 __ jump_from_interpreted(rbx, rax); 3778 } 3779 3780 void TemplateTable::invokestatic(int byte_no) { 3781 transition(vtos, vtos); 3782 assert(byte_no == f1_byte, "use this argument"); 3783 prepare_invoke(byte_no, rbx); // get f1 Method* 3784 // do the call 3785 __ profile_call(rax); 3786 __ profile_arguments_type(rax, rbx, rbcp, false); 3787 __ jump_from_interpreted(rbx, rax); 3788 } 3789 3790 3791 void TemplateTable::fast_invokevfinal(int byte_no) { 3792 transition(vtos, vtos); 3793 assert(byte_no == f2_byte, "use this argument"); 3794 __ stop("fast_invokevfinal not used on x86"); 3795 } 3796 3797 3798 void TemplateTable::invokeinterface(int byte_no) { 3799 transition(vtos, vtos); 3800 assert(byte_no == f1_byte, "use this argument"); 3801 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 Method* 3802 rcx, rdx); // recv, flags 3803 3804 // rax: reference klass (from f1) if interface method 3805 // rbx: method (from f2) 3806 // rcx: receiver 3807 // rdx: flags 3808 3809 // First check for Object case, then private interface method, 3810 // then regular interface method. 3811 3812 // Special case of invokeinterface called for virtual method of 3813 // java.lang.Object. See cpCache.cpp for details. 3814 Label notObjectMethod; 3815 __ movl(rlocals, rdx); 3816 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3817 __ jcc(Assembler::zero, notObjectMethod); 3818 invokevirtual_helper(rbx, rcx, rdx); 3819 // no return from above 3820 __ bind(notObjectMethod); 3821 3822 Label no_such_interface; // for receiver subtype check 3823 Register recvKlass; // used for exception processing 3824 3825 // Check for private method invocation - indicated by vfinal 3826 Label notVFinal; 3827 __ movl(rlocals, rdx); 3828 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3829 __ jcc(Assembler::zero, notVFinal); 3830 3831 // Get receiver klass into rlocals - also a null check 3832 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 3833 __ load_klass(rlocals, rcx); 3834 3835 Label subtype; 3836 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3837 // If we get here the typecheck failed 3838 recvKlass = rdx; 3839 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3840 __ jmp(no_such_interface); 3841 3842 __ bind(subtype); 3843 3844 // do the call - rbx is actually the method to call 3845 3846 __ profile_final_call(rdx); 3847 __ profile_arguments_type(rdx, rbx, rbcp, true); 3848 3849 __ jump_from_interpreted(rbx, rdx); 3850 // no return from above 3851 __ bind(notVFinal); 3852 3853 // Get receiver klass into rdx - also a null check 3854 __ restore_locals(); // restore r14 3855 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 3856 __ load_klass(rdx, rcx); 3857 3858 Label no_such_method; 3859 3860 // Preserve method for throw_AbstractMethodErrorVerbose. 3861 __ mov(rcx, rbx); 3862 // Receiver subtype check against REFC. 3863 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3864 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3865 rdx, rax, noreg, 3866 // outputs: scan temp. reg, scan temp. reg 3867 rbcp, rlocals, 3868 no_such_interface, 3869 /*return_method=*/false); 3870 3871 // profile this call 3872 __ restore_bcp(); // rbcp was destroyed by receiver type check 3873 __ profile_virtual_call(rdx, rbcp, rlocals); 3874 3875 // Get declaring interface class from method, and itable index 3876 __ load_method_holder(rax, rbx); 3877 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3878 __ subl(rbx, Method::itable_index_max); 3879 __ negl(rbx); 3880 3881 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3882 __ mov(rlocals, rdx); 3883 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3884 rlocals, rax, rbx, 3885 // outputs: method, scan temp. reg 3886 rbx, rbcp, 3887 no_such_interface); 3888 3889 // rbx: Method* to call 3890 // rcx: receiver 3891 // Check for abstract method error 3892 // Note: This should be done more efficiently via a throw_abstract_method_error 3893 // interpreter entry point and a conditional jump to it in case of a null 3894 // method. 3895 __ testptr(rbx, rbx); 3896 __ jcc(Assembler::zero, no_such_method); 3897 3898 __ profile_called_method(rbx, rbcp, rdx); 3899 __ profile_arguments_type(rdx, rbx, rbcp, true); 3900 3901 // do the call 3902 // rcx: receiver 3903 // rbx,: Method* 3904 __ jump_from_interpreted(rbx, rdx); 3905 __ should_not_reach_here(); 3906 3907 // exception handling code follows... 3908 // note: must restore interpreter registers to canonical 3909 // state for exception handling to work correctly! 3910 3911 __ bind(no_such_method); 3912 // throw exception 3913 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3914 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3915 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3916 // Pass arguments for generating a verbose error message. 3917 #ifdef _LP64 3918 recvKlass = c_rarg1; 3919 Register method = c_rarg2; 3920 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3921 if (method != rcx) { __ movq(method, rcx); } 3922 #else 3923 recvKlass = rdx; 3924 Register method = rcx; 3925 #endif 3926 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3927 recvKlass, method); 3928 // The call_VM checks for exception, so we should never return here. 3929 __ should_not_reach_here(); 3930 3931 __ bind(no_such_interface); 3932 // throw exception 3933 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3934 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3935 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3936 // Pass arguments for generating a verbose error message. 3937 LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } ) 3938 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3939 recvKlass, rax); 3940 // the call_VM checks for exception, so we should never return here. 3941 __ should_not_reach_here(); 3942 } 3943 3944 void TemplateTable::invokehandle(int byte_no) { 3945 transition(vtos, vtos); 3946 assert(byte_no == f1_byte, "use this argument"); 3947 const Register rbx_method = rbx; 3948 const Register rax_mtype = rax; 3949 const Register rcx_recv = rcx; 3950 const Register rdx_flags = rdx; 3951 3952 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3953 __ verify_method_ptr(rbx_method); 3954 __ verify_oop(rcx_recv); 3955 __ null_check(rcx_recv); 3956 3957 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3958 // rbx: MH.invokeExact_MT method (from f2) 3959 3960 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3961 3962 // FIXME: profile the LambdaForm also 3963 __ profile_final_call(rax); 3964 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3965 3966 __ jump_from_interpreted(rbx_method, rdx); 3967 } 3968 3969 void TemplateTable::invokedynamic(int byte_no) { 3970 transition(vtos, vtos); 3971 assert(byte_no == f1_byte, "use this argument"); 3972 3973 const Register rbx_method = rbx; 3974 const Register rax_callsite = rax; 3975 3976 prepare_invoke(byte_no, rbx_method, rax_callsite); 3977 3978 // rax: CallSite object (from cpool->resolved_references[f1]) 3979 // rbx: MH.linkToCallSite method (from f2) 3980 3981 // Note: rax_callsite is already pushed by prepare_invoke 3982 3983 // %%% should make a type profile for any invokedynamic that takes a ref argument 3984 // profile this call 3985 __ profile_call(rbcp); 3986 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3987 3988 __ verify_oop(rax_callsite); 3989 3990 __ jump_from_interpreted(rbx_method, rdx); 3991 } 3992 3993 //----------------------------------------------------------------------------- 3994 // Allocation 3995 3996 void TemplateTable::_new() { 3997 transition(vtos, atos); 3998 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3999 Label slow_case; 4000 Label slow_case_no_pop; 4001 Label done; 4002 Label initialize_header; 4003 Label initialize_object; // including clearing the fields 4004 4005 __ get_cpool_and_tags(rcx, rax); 4006 4007 // Make sure the class we're about to instantiate has been resolved. 4008 // This is done before loading InstanceKlass to be consistent with the order 4009 // how Constant Pool is updated (see ConstantPool::klass_at_put) 4010 const int tags_offset = Array<u1>::base_offset_in_bytes(); 4011 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 4012 __ jcc(Assembler::notEqual, slow_case_no_pop); 4013 4014 // get InstanceKlass 4015 __ load_resolved_klass_at_index(rcx, rcx, rdx); 4016 __ push(rcx); // save the contexts of klass for initializing the header 4017 4018 // make sure klass is initialized & doesn't have finalizer 4019 // make sure klass is fully initialized 4020 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4021 __ jcc(Assembler::notEqual, slow_case); 4022 4023 // get instance_size in InstanceKlass (scaled to a count of bytes) 4024 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 4025 // test to see if it has a finalizer or is malformed in some way 4026 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 4027 __ jcc(Assembler::notZero, slow_case); 4028 4029 // Allocate the instance: 4030 // If TLAB is enabled: 4031 // Try to allocate in the TLAB. 4032 // If fails, go to the slow path. 4033 // Else If inline contiguous allocations are enabled: 4034 // Try to allocate in eden. 4035 // If fails due to heap end, go to slow path. 4036 // 4037 // If TLAB is enabled OR inline contiguous is enabled: 4038 // Initialize the allocation. 4039 // Exit. 4040 // 4041 // Go to slow path. 4042 4043 const bool allow_shared_alloc = 4044 Universe::heap()->supports_inline_contig_alloc(); 4045 4046 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 4047 #ifndef _LP64 4048 if (UseTLAB || allow_shared_alloc) { 4049 __ get_thread(thread); 4050 } 4051 #endif // _LP64 4052 4053 if (UseTLAB) { 4054 __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case); 4055 if (ZeroTLAB) { 4056 // the fields have been already cleared 4057 __ jmp(initialize_header); 4058 } else { 4059 // initialize both the header and fields 4060 __ jmp(initialize_object); 4061 } 4062 } else { 4063 // Allocation in the shared Eden, if allowed. 4064 // 4065 // rdx: instance size in bytes 4066 __ eden_allocate(thread, rax, rdx, 0, rbx, slow_case); 4067 } 4068 4069 // If UseTLAB or allow_shared_alloc are true, the object is created above and 4070 // there is an initialize need. Otherwise, skip and go to the slow path. 4071 if (UseTLAB || allow_shared_alloc) { 4072 // The object is initialized before the header. If the object size is 4073 // zero, go directly to the header initialization. 4074 __ bind(initialize_object); 4075 __ decrement(rdx, sizeof(oopDesc)); 4076 __ jcc(Assembler::zero, initialize_header); 4077 4078 // Initialize topmost object field, divide rdx by 8, check if odd and 4079 // test if zero. 4080 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 4081 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 4082 4083 // rdx must have been multiple of 8 4084 #ifdef ASSERT 4085 // make sure rdx was multiple of 8 4086 Label L; 4087 // Ignore partial flag stall after shrl() since it is debug VM 4088 __ jcc(Assembler::carryClear, L); 4089 __ stop("object size is not multiple of 2 - adjust this code"); 4090 __ bind(L); 4091 // rdx must be > 0, no extra check needed here 4092 #endif 4093 4094 // initialize remaining object fields: rdx was a multiple of 8 4095 { Label loop; 4096 __ bind(loop); 4097 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); 4098 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); 4099 __ decrement(rdx); 4100 __ jcc(Assembler::notZero, loop); 4101 } 4102 4103 // initialize object header only. 4104 __ bind(initialize_header); 4105 if (UseBiasedLocking) { 4106 __ pop(rcx); // get saved klass back in the register. 4107 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 4108 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); 4109 } else { 4110 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), 4111 (intptr_t)markWord::prototype().value()); // header 4112 __ pop(rcx); // get saved klass back in the register. 4113 } 4114 #ifdef _LP64 4115 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 4116 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 4117 #endif 4118 __ store_klass(rax, rcx); // klass 4119 4120 { 4121 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0); 4122 // Trigger dtrace event for fastpath 4123 __ push(atos); 4124 __ call_VM_leaf( 4125 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 4126 __ pop(atos); 4127 } 4128 4129 __ jmp(done); 4130 } 4131 4132 // slow case 4133 __ bind(slow_case); 4134 __ pop(rcx); // restore stack pointer to what it was when we came in. 4135 __ bind(slow_case_no_pop); 4136 4137 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4138 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4139 4140 __ get_constant_pool(rarg1); 4141 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4142 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 4143 __ verify_oop(rax); 4144 4145 // continue 4146 __ bind(done); 4147 } 4148 4149 void TemplateTable::newarray() { 4150 transition(itos, atos); 4151 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4152 __ load_unsigned_byte(rarg1, at_bcp(1)); 4153 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 4154 rarg1, rax); 4155 } 4156 4157 void TemplateTable::anewarray() { 4158 transition(itos, atos); 4159 4160 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4161 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4162 4163 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4164 __ get_constant_pool(rarg1); 4165 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 4166 rarg1, rarg2, rax); 4167 } 4168 4169 void TemplateTable::arraylength() { 4170 transition(atos, itos); 4171 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 4172 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 4173 } 4174 4175 void TemplateTable::checkcast() { 4176 transition(atos, atos); 4177 Label done, is_null, ok_is_subtype, quicked, resolved; 4178 __ testptr(rax, rax); // object is in rax 4179 __ jcc(Assembler::zero, is_null); 4180 4181 // Get cpool & tags index 4182 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4183 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4184 // See if bytecode has already been quicked 4185 __ cmpb(Address(rdx, rbx, 4186 Address::times_1, 4187 Array<u1>::base_offset_in_bytes()), 4188 JVM_CONSTANT_Class); 4189 __ jcc(Assembler::equal, quicked); 4190 __ push(atos); // save receiver for result, and for GC 4191 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4192 4193 // vm_result_2 has metadata result 4194 #ifndef _LP64 4195 // borrow rdi from locals 4196 __ get_thread(rdi); 4197 __ get_vm_result_2(rax, rdi); 4198 __ restore_locals(); 4199 #else 4200 __ get_vm_result_2(rax, r15_thread); 4201 #endif 4202 4203 __ pop_ptr(rdx); // restore receiver 4204 __ jmpb(resolved); 4205 4206 // Get superklass in rax and subklass in rbx 4207 __ bind(quicked); 4208 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4209 __ load_resolved_klass_at_index(rax, rcx, rbx); 4210 4211 __ bind(resolved); 4212 __ load_klass(rbx, rdx); 4213 4214 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4215 // Superklass in rax. Subklass in rbx. 4216 __ gen_subtype_check(rbx, ok_is_subtype); 4217 4218 // Come here on failure 4219 __ push_ptr(rdx); 4220 // object is at TOS 4221 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 4222 4223 // Come here on success 4224 __ bind(ok_is_subtype); 4225 __ mov(rax, rdx); // Restore object in rdx 4226 4227 // Collect counts on whether this check-cast sees NULLs a lot or not. 4228 if (ProfileInterpreter) { 4229 __ jmp(done); 4230 __ bind(is_null); 4231 __ profile_null_seen(rcx); 4232 } else { 4233 __ bind(is_null); // same as 'done' 4234 } 4235 __ bind(done); 4236 } 4237 4238 void TemplateTable::instanceof() { 4239 transition(atos, itos); 4240 Label done, is_null, ok_is_subtype, quicked, resolved; 4241 __ testptr(rax, rax); 4242 __ jcc(Assembler::zero, is_null); 4243 4244 // Get cpool & tags index 4245 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4246 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4247 // See if bytecode has already been quicked 4248 __ cmpb(Address(rdx, rbx, 4249 Address::times_1, 4250 Array<u1>::base_offset_in_bytes()), 4251 JVM_CONSTANT_Class); 4252 __ jcc(Assembler::equal, quicked); 4253 4254 __ push(atos); // save receiver for result, and for GC 4255 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4256 // vm_result_2 has metadata result 4257 4258 #ifndef _LP64 4259 // borrow rdi from locals 4260 __ get_thread(rdi); 4261 __ get_vm_result_2(rax, rdi); 4262 __ restore_locals(); 4263 #else 4264 __ get_vm_result_2(rax, r15_thread); 4265 #endif 4266 4267 __ pop_ptr(rdx); // restore receiver 4268 __ verify_oop(rdx); 4269 __ load_klass(rdx, rdx); 4270 __ jmpb(resolved); 4271 4272 // Get superklass in rax and subklass in rdx 4273 __ bind(quicked); 4274 __ load_klass(rdx, rax); 4275 __ load_resolved_klass_at_index(rax, rcx, rbx); 4276 4277 __ bind(resolved); 4278 4279 // Generate subtype check. Blows rcx, rdi 4280 // Superklass in rax. Subklass in rdx. 4281 __ gen_subtype_check(rdx, ok_is_subtype); 4282 4283 // Come here on failure 4284 __ xorl(rax, rax); 4285 __ jmpb(done); 4286 // Come here on success 4287 __ bind(ok_is_subtype); 4288 __ movl(rax, 1); 4289 4290 // Collect counts on whether this test sees NULLs a lot or not. 4291 if (ProfileInterpreter) { 4292 __ jmp(done); 4293 __ bind(is_null); 4294 __ profile_null_seen(rcx); 4295 } else { 4296 __ bind(is_null); // same as 'done' 4297 } 4298 __ bind(done); 4299 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 4300 // rax = 1: obj != NULL and obj is an instanceof the specified klass 4301 } 4302 4303 4304 //---------------------------------------------------------------------------------------------------- 4305 // Breakpoints 4306 void TemplateTable::_breakpoint() { 4307 // Note: We get here even if we are single stepping.. 4308 // jbug insists on setting breakpoints at every bytecode 4309 // even if we are in single step mode. 4310 4311 transition(vtos, vtos); 4312 4313 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4314 4315 // get the unpatched byte code 4316 __ get_method(rarg); 4317 __ call_VM(noreg, 4318 CAST_FROM_FN_PTR(address, 4319 InterpreterRuntime::get_original_bytecode_at), 4320 rarg, rbcp); 4321 __ mov(rbx, rax); // why? 4322 4323 // post the breakpoint event 4324 __ get_method(rarg); 4325 __ call_VM(noreg, 4326 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4327 rarg, rbcp); 4328 4329 // complete the execution of original bytecode 4330 __ dispatch_only_normal(vtos); 4331 } 4332 4333 //----------------------------------------------------------------------------- 4334 // Exceptions 4335 4336 void TemplateTable::athrow() { 4337 transition(atos, vtos); 4338 __ null_check(rax); 4339 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 4340 } 4341 4342 //----------------------------------------------------------------------------- 4343 // Synchronization 4344 // 4345 // Note: monitorenter & exit are symmetric routines; which is reflected 4346 // in the assembly code structure as well 4347 // 4348 // Stack layout: 4349 // 4350 // [expressions ] <--- rsp = expression stack top 4351 // .. 4352 // [expressions ] 4353 // [monitor entry] <--- monitor block top = expression stack bot 4354 // .. 4355 // [monitor entry] 4356 // [frame data ] <--- monitor block bot 4357 // ... 4358 // [saved rbp ] <--- rbp 4359 void TemplateTable::monitorenter() { 4360 transition(atos, vtos); 4361 4362 // check for NULL object 4363 __ null_check(rax); 4364 4365 __ resolve(IS_NOT_NULL, rax); 4366 4367 const Address monitor_block_top( 4368 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4369 const Address monitor_block_bot( 4370 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4371 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4372 4373 Label allocated; 4374 4375 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4376 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4377 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4378 4379 // initialize entry pointer 4380 __ xorl(rmon, rmon); // points to free slot or NULL 4381 4382 // find a free slot in the monitor block (result in rmon) 4383 { 4384 Label entry, loop, exit; 4385 __ movptr(rtop, monitor_block_top); // points to current entry, 4386 // starting with top-most entry 4387 __ lea(rbot, monitor_block_bot); // points to word before bottom 4388 // of monitor block 4389 __ jmpb(entry); 4390 4391 __ bind(loop); 4392 // check if current entry is used 4393 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 4394 // if not used then remember entry in rmon 4395 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4396 // check if current entry is for same object 4397 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4398 // if same object then stop searching 4399 __ jccb(Assembler::equal, exit); 4400 // otherwise advance to next entry 4401 __ addptr(rtop, entry_size); 4402 __ bind(entry); 4403 // check if bottom reached 4404 __ cmpptr(rtop, rbot); 4405 // if not at bottom then check this entry 4406 __ jcc(Assembler::notEqual, loop); 4407 __ bind(exit); 4408 } 4409 4410 __ testptr(rmon, rmon); // check if a slot has been found 4411 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4412 4413 // allocate one if there's no free slot 4414 { 4415 Label entry, loop; 4416 // 1. compute new pointers // rsp: old expression stack top 4417 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4418 __ subptr(rsp, entry_size); // move expression stack top 4419 __ subptr(rmon, entry_size); // move expression stack bottom 4420 __ mov(rtop, rsp); // set start value for copy loop 4421 __ movptr(monitor_block_bot, rmon); // set new monitor block bottom 4422 __ jmp(entry); 4423 // 2. move expression stack contents 4424 __ bind(loop); 4425 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4426 // word from old location 4427 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4428 __ addptr(rtop, wordSize); // advance to next word 4429 __ bind(entry); 4430 __ cmpptr(rtop, rmon); // check if bottom reached 4431 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4432 // copy next word 4433 } 4434 4435 // call run-time routine 4436 // rmon: points to monitor entry 4437 __ bind(allocated); 4438 4439 // Increment bcp to point to the next bytecode, so exception 4440 // handling for async. exceptions work correctly. 4441 // The object has already been poped from the stack, so the 4442 // expression stack looks correct. 4443 __ increment(rbcp); 4444 4445 // store object 4446 __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax); 4447 __ lock_object(rmon); 4448 4449 // check to make sure this monitor doesn't cause stack overflow after locking 4450 __ save_bcp(); // in case of exception 4451 __ generate_stack_overflow_check(0); 4452 4453 // The bcp has already been incremented. Just need to dispatch to 4454 // next instruction. 4455 __ dispatch_next(vtos); 4456 } 4457 4458 void TemplateTable::monitorexit() { 4459 transition(atos, vtos); 4460 4461 // check for NULL object 4462 __ null_check(rax); 4463 4464 __ resolve(IS_NOT_NULL, rax); 4465 4466 const Address monitor_block_top( 4467 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4468 const Address monitor_block_bot( 4469 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4470 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4471 4472 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4473 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4474 4475 Label found; 4476 4477 // find matching slot 4478 { 4479 Label entry, loop; 4480 __ movptr(rtop, monitor_block_top); // points to current entry, 4481 // starting with top-most entry 4482 __ lea(rbot, monitor_block_bot); // points to word before bottom 4483 // of monitor block 4484 __ jmpb(entry); 4485 4486 __ bind(loop); 4487 // check if current entry is for same object 4488 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4489 // if same object then stop searching 4490 __ jcc(Assembler::equal, found); 4491 // otherwise advance to next entry 4492 __ addptr(rtop, entry_size); 4493 __ bind(entry); 4494 // check if bottom reached 4495 __ cmpptr(rtop, rbot); 4496 // if not at bottom then check this entry 4497 __ jcc(Assembler::notEqual, loop); 4498 } 4499 4500 // error handling. Unlocking was not block-structured 4501 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4502 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4503 __ should_not_reach_here(); 4504 4505 // call run-time routine 4506 __ bind(found); 4507 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4508 __ unlock_object(rtop); 4509 __ pop_ptr(rax); // discard object 4510 } 4511 4512 // Wide instructions 4513 void TemplateTable::wide() { 4514 transition(vtos, vtos); 4515 __ load_unsigned_byte(rbx, at_bcp(1)); 4516 ExternalAddress wtable((address)Interpreter::_wentry_point); 4517 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr))); 4518 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4519 } 4520 4521 // Multi arrays 4522 void TemplateTable::multianewarray() { 4523 transition(vtos, atos); 4524 4525 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4526 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4527 // last dim is on top of stack; we want address of first one: 4528 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4529 // the latter wordSize to point to the beginning of the array. 4530 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4531 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4532 __ load_unsigned_byte(rbx, at_bcp(3)); 4533 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4534 }