1 /* 2 * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #ifndef _WINDOWS 27 #include "alloca.h" 28 #endif 29 #include "asm/macroAssembler.hpp" 30 #include "asm/macroAssembler.inline.hpp" 31 #include "code/debugInfoRec.hpp" 32 #include "code/icBuffer.hpp" 33 #include "code/nativeInst.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "gc/shared/gcLocker.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/barrierSetAssembler.hpp" 39 #include "interpreter/interpreter.hpp" 40 #include "logging/log.hpp" 41 #include "memory/resourceArea.hpp" 42 #include "memory/universe.hpp" 43 #include "oops/compiledICHolder.hpp" 44 #include "oops/klass.inline.hpp" 45 #include "runtime/safepointMechanism.hpp" 46 #include "runtime/sharedRuntime.hpp" 47 #include "runtime/vframeArray.hpp" 48 #include "runtime/vm_version.hpp" 49 #include "utilities/align.hpp" 50 #include "utilities/formatBuffer.hpp" 51 #include "vmreg_x86.inline.hpp" 52 #ifdef COMPILER1 53 #include "c1/c1_Runtime1.hpp" 54 #endif 55 #ifdef COMPILER2 56 #include "opto/runtime.hpp" 57 #endif 58 #if INCLUDE_JVMCI 59 #include "jvmci/jvmciJavaClasses.hpp" 60 #endif 61 62 #define __ masm-> 63 64 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 65 66 class SimpleRuntimeFrame { 67 68 public: 69 70 // Most of the runtime stubs have this simple frame layout. 71 // This class exists to make the layout shared in one place. 72 // Offsets are for compiler stack slots, which are jints. 73 enum layout { 74 // The frame sender code expects that rbp will be in the "natural" place and 75 // will override any oopMap setting for it. We must therefore force the layout 76 // so that it agrees with the frame sender code. 77 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, 78 rbp_off2, 79 return_off, return_off2, 80 framesize 81 }; 82 }; 83 84 class RegisterSaver { 85 // Capture info about frame layout. Layout offsets are in jint 86 // units because compiler frame slots are jints. 87 #define XSAVE_AREA_BEGIN 160 88 #define XSAVE_AREA_YMM_BEGIN 576 89 #define XSAVE_AREA_ZMM_BEGIN 1152 90 #define XSAVE_AREA_UPPERBANK 1664 91 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off 92 #define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off 93 #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off 94 enum layout { 95 fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area 96 xmm_off = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt, // offset in fxsave save area 97 DEF_XMM_OFFS(0), 98 DEF_XMM_OFFS(1), 99 // 2..15 are implied in range usage 100 ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt, 101 DEF_YMM_OFFS(0), 102 DEF_YMM_OFFS(1), 103 // 2..15 are implied in range usage 104 zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt, 105 zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt, 106 DEF_ZMM_OFFS(16), 107 DEF_ZMM_OFFS(17), 108 // 18..31 are implied in range usage 109 fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt), 110 fpu_stateH_end, 111 r15_off, r15H_off, 112 r14_off, r14H_off, 113 r13_off, r13H_off, 114 r12_off, r12H_off, 115 r11_off, r11H_off, 116 r10_off, r10H_off, 117 r9_off, r9H_off, 118 r8_off, r8H_off, 119 rdi_off, rdiH_off, 120 rsi_off, rsiH_off, 121 ignore_off, ignoreH_off, // extra copy of rbp 122 rsp_off, rspH_off, 123 rbx_off, rbxH_off, 124 rdx_off, rdxH_off, 125 rcx_off, rcxH_off, 126 rax_off, raxH_off, 127 // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state 128 align_off, alignH_off, 129 flags_off, flagsH_off, 130 // The frame sender code expects that rbp will be in the "natural" place and 131 // will override any oopMap setting for it. We must therefore force the layout 132 // so that it agrees with the frame sender code. 133 rbp_off, rbpH_off, // copy of rbp we will restore 134 return_off, returnH_off, // slot for return address 135 reg_save_size // size in compiler stack slots 136 }; 137 138 public: 139 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false); 140 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); 141 142 // Offsets into the register save area 143 // Used by deoptimization when it is managing result register 144 // values on its own 145 146 static int rax_offset_in_bytes(void) { return BytesPerInt * rax_off; } 147 static int rdx_offset_in_bytes(void) { return BytesPerInt * rdx_off; } 148 static int rbx_offset_in_bytes(void) { return BytesPerInt * rbx_off; } 149 static int xmm0_offset_in_bytes(void) { return BytesPerInt * xmm0_off; } 150 static int return_offset_in_bytes(void) { return BytesPerInt * return_off; } 151 152 // During deoptimization only the result registers need to be restored, 153 // all the other values have already been extracted. 154 static void restore_result_registers(MacroAssembler* masm); 155 }; 156 157 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) { 158 int off = 0; 159 int num_xmm_regs = XMMRegisterImpl::number_of_registers; 160 if (UseAVX < 3) { 161 num_xmm_regs = num_xmm_regs/2; 162 } 163 #if COMPILER2_OR_JVMCI 164 if (save_vectors) { 165 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 166 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 167 } 168 #else 169 assert(!save_vectors, "vectors are generated only by C2 and JVMCI"); 170 #endif 171 172 // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated 173 int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs); 174 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 175 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 176 // CodeBlob frame size is in words. 177 int frame_size_in_words = frame_size_in_bytes / wordSize; 178 *total_frame_words = frame_size_in_words; 179 180 // Save registers, fpu state, and flags. 181 // We assume caller has already pushed the return address onto the 182 // stack, so rsp is 8-byte aligned here. 183 // We push rpb twice in this sequence because we want the real rbp 184 // to be under the return like a normal enter. 185 186 __ enter(); // rsp becomes 16-byte aligned here 187 __ push_CPU_state(); // Push a multiple of 16 bytes 188 189 // push cpu state handles this on EVEX enabled targets 190 if (save_vectors) { 191 // Save upper half of YMM registers(0..15) 192 int base_addr = XSAVE_AREA_YMM_BEGIN; 193 for (int n = 0; n < 16; n++) { 194 __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n)); 195 } 196 if (VM_Version::supports_evex()) { 197 // Save upper half of ZMM registers(0..15) 198 base_addr = XSAVE_AREA_ZMM_BEGIN; 199 for (int n = 0; n < 16; n++) { 200 __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n)); 201 } 202 // Save full ZMM registers(16..num_xmm_regs) 203 base_addr = XSAVE_AREA_UPPERBANK; 204 off = 0; 205 int vector_len = Assembler::AVX_512bit; 206 for (int n = 16; n < num_xmm_regs; n++) { 207 __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len); 208 } 209 } 210 } else { 211 if (VM_Version::supports_evex()) { 212 // Save upper bank of ZMM registers(16..31) for double/float usage 213 int base_addr = XSAVE_AREA_UPPERBANK; 214 off = 0; 215 for (int n = 16; n < num_xmm_regs; n++) { 216 __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n)); 217 } 218 } 219 } 220 __ vzeroupper(); 221 if (frame::arg_reg_save_area_bytes != 0) { 222 // Allocate argument register save area 223 __ subptr(rsp, frame::arg_reg_save_area_bytes); 224 } 225 226 // Set an oopmap for the call site. This oopmap will map all 227 // oop-registers and debug-info registers as callee-saved. This 228 // will allow deoptimization at this safepoint to find all possible 229 // debug-info recordings, as well as let GC find all oops. 230 231 OopMapSet *oop_maps = new OopMapSet(); 232 OopMap* map = new OopMap(frame_size_in_slots, 0); 233 234 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x)) 235 236 map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg()); 237 map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg()); 238 map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg()); 239 map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg()); 240 // rbp location is known implicitly by the frame sender code, needs no oopmap 241 // and the location where rbp was saved by is ignored 242 map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg()); 243 map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg()); 244 map->set_callee_saved(STACK_OFFSET( r8_off ), r8->as_VMReg()); 245 map->set_callee_saved(STACK_OFFSET( r9_off ), r9->as_VMReg()); 246 map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg()); 247 map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg()); 248 map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg()); 249 map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg()); 250 map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg()); 251 map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg()); 252 // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15, 253 // on EVEX enabled targets, we get it included in the xsave area 254 off = xmm0_off; 255 int delta = xmm1_off - off; 256 for (int n = 0; n < 16; n++) { 257 XMMRegister xmm_name = as_XMMRegister(n); 258 map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()); 259 off += delta; 260 } 261 if(UseAVX > 2) { 262 // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets 263 off = zmm16_off; 264 delta = zmm17_off - off; 265 for (int n = 16; n < num_xmm_regs; n++) { 266 XMMRegister zmm_name = as_XMMRegister(n); 267 map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()); 268 off += delta; 269 } 270 } 271 272 #if COMPILER2_OR_JVMCI 273 if (save_vectors) { 274 off = ymm0_off; 275 int delta = ymm1_off - off; 276 for (int n = 0; n < 16; n++) { 277 XMMRegister ymm_name = as_XMMRegister(n); 278 map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4)); 279 off += delta; 280 } 281 } 282 #endif // COMPILER2_OR_JVMCI 283 284 // %%% These should all be a waste but we'll keep things as they were for now 285 if (true) { 286 map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next()); 287 map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next()); 288 map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next()); 289 map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next()); 290 // rbp location is known implicitly by the frame sender code, needs no oopmap 291 map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next()); 292 map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next()); 293 map->set_callee_saved(STACK_OFFSET( r8H_off ), r8->as_VMReg()->next()); 294 map->set_callee_saved(STACK_OFFSET( r9H_off ), r9->as_VMReg()->next()); 295 map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next()); 296 map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next()); 297 map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next()); 298 map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next()); 299 map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next()); 300 map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next()); 301 // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15, 302 // on EVEX enabled targets, we get it included in the xsave area 303 off = xmm0H_off; 304 delta = xmm1H_off - off; 305 for (int n = 0; n < 16; n++) { 306 XMMRegister xmm_name = as_XMMRegister(n); 307 map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next()); 308 off += delta; 309 } 310 if (UseAVX > 2) { 311 // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets 312 off = zmm16H_off; 313 delta = zmm17H_off - off; 314 for (int n = 16; n < num_xmm_regs; n++) { 315 XMMRegister zmm_name = as_XMMRegister(n); 316 map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next()); 317 off += delta; 318 } 319 } 320 } 321 322 return map; 323 } 324 325 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { 326 int num_xmm_regs = XMMRegisterImpl::number_of_registers; 327 if (UseAVX < 3) { 328 num_xmm_regs = num_xmm_regs/2; 329 } 330 if (frame::arg_reg_save_area_bytes != 0) { 331 // Pop arg register save area 332 __ addptr(rsp, frame::arg_reg_save_area_bytes); 333 } 334 335 #if COMPILER2_OR_JVMCI 336 if (restore_vectors) { 337 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 338 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 339 } 340 #else 341 assert(!restore_vectors, "vectors are generated only by C2"); 342 #endif 343 344 __ vzeroupper(); 345 346 // On EVEX enabled targets everything is handled in pop fpu state 347 if (restore_vectors) { 348 // Restore upper half of YMM registers (0..15) 349 int base_addr = XSAVE_AREA_YMM_BEGIN; 350 for (int n = 0; n < 16; n++) { 351 __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16)); 352 } 353 if (VM_Version::supports_evex()) { 354 // Restore upper half of ZMM registers (0..15) 355 base_addr = XSAVE_AREA_ZMM_BEGIN; 356 for (int n = 0; n < 16; n++) { 357 __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32)); 358 } 359 // Restore full ZMM registers(16..num_xmm_regs) 360 base_addr = XSAVE_AREA_UPPERBANK; 361 int vector_len = Assembler::AVX_512bit; 362 int off = 0; 363 for (int n = 16; n < num_xmm_regs; n++) { 364 __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len); 365 } 366 } 367 } else { 368 if (VM_Version::supports_evex()) { 369 // Restore upper bank of ZMM registers(16..31) for double/float usage 370 int base_addr = XSAVE_AREA_UPPERBANK; 371 int off = 0; 372 for (int n = 16; n < num_xmm_regs; n++) { 373 __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64))); 374 } 375 } 376 } 377 378 // Recover CPU state 379 __ pop_CPU_state(); 380 // Get the rbp described implicitly by the calling convention (no oopMap) 381 __ pop(rbp); 382 } 383 384 void RegisterSaver::restore_result_registers(MacroAssembler* masm) { 385 386 // Just restore result register. Only used by deoptimization. By 387 // now any callee save register that needs to be restored to a c2 388 // caller of the deoptee has been extracted into the vframeArray 389 // and will be stuffed into the c2i adapter we create for later 390 // restoration so only result registers need to be restored here. 391 392 // Restore fp result register 393 __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes())); 394 // Restore integer result register 395 __ movptr(rax, Address(rsp, rax_offset_in_bytes())); 396 __ movptr(rdx, Address(rsp, rdx_offset_in_bytes())); 397 398 // Pop all of the register save are off the stack except the return address 399 __ addptr(rsp, return_offset_in_bytes()); 400 } 401 402 // Is vector's size (in bytes) bigger than a size saved by default? 403 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions. 404 bool SharedRuntime::is_wide_vector(int size) { 405 return size > 16; 406 } 407 408 size_t SharedRuntime::trampoline_size() { 409 return 16; 410 } 411 412 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) { 413 __ jump(RuntimeAddress(destination)); 414 } 415 416 // The java_calling_convention describes stack locations as ideal slots on 417 // a frame with no abi restrictions. Since we must observe abi restrictions 418 // (like the placement of the register window) the slots must be biased by 419 // the following value. 420 static int reg2offset_in(VMReg r) { 421 // Account for saved rbp and return address 422 // This should really be in_preserve_stack_slots 423 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 424 } 425 426 static int reg2offset_out(VMReg r) { 427 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 428 } 429 430 // --------------------------------------------------------------------------- 431 // Read the array of BasicTypes from a signature, and compute where the 432 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 433 // quantities. Values less than VMRegImpl::stack0 are registers, those above 434 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 435 // as framesizes are fixed. 436 // VMRegImpl::stack0 refers to the first slot 0(sp). 437 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register 438 // up to RegisterImpl::number_of_registers) are the 64-bit 439 // integer registers. 440 441 // Note: the INPUTS in sig_bt are in units of Java argument words, which are 442 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit 443 // units regardless of build. Of course for i486 there is no 64 bit build 444 445 // The Java calling convention is a "shifted" version of the C ABI. 446 // By skipping the first C ABI register we can call non-static jni methods 447 // with small numbers of arguments without having to shuffle the arguments 448 // at all. Since we control the java ABI we ought to at least get some 449 // advantage out of it. 450 451 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 452 VMRegPair *regs, 453 int total_args_passed, 454 int is_outgoing) { 455 456 // Create the mapping between argument positions and 457 // registers. 458 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 459 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5 460 }; 461 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 462 j_farg0, j_farg1, j_farg2, j_farg3, 463 j_farg4, j_farg5, j_farg6, j_farg7 464 }; 465 466 467 uint int_args = 0; 468 uint fp_args = 0; 469 uint stk_args = 0; // inc by 2 each time 470 471 for (int i = 0; i < total_args_passed; i++) { 472 switch (sig_bt[i]) { 473 case T_BOOLEAN: 474 case T_CHAR: 475 case T_BYTE: 476 case T_SHORT: 477 case T_INT: 478 if (int_args < Argument::n_int_register_parameters_j) { 479 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 480 } else { 481 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 482 stk_args += 2; 483 } 484 break; 485 case T_VOID: 486 // halves of T_LONG or T_DOUBLE 487 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 488 regs[i].set_bad(); 489 break; 490 case T_LONG: 491 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 492 // fall through 493 case T_OBJECT: 494 case T_ARRAY: 495 case T_ADDRESS: 496 if (int_args < Argument::n_int_register_parameters_j) { 497 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 498 } else { 499 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 500 stk_args += 2; 501 } 502 break; 503 case T_FLOAT: 504 if (fp_args < Argument::n_float_register_parameters_j) { 505 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 506 } else { 507 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 508 stk_args += 2; 509 } 510 break; 511 case T_DOUBLE: 512 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 513 if (fp_args < Argument::n_float_register_parameters_j) { 514 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 515 } else { 516 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 517 stk_args += 2; 518 } 519 break; 520 default: 521 ShouldNotReachHere(); 522 break; 523 } 524 } 525 526 return align_up(stk_args, 2); 527 } 528 529 // Patch the callers callsite with entry to compiled code if it exists. 530 static void patch_callers_callsite(MacroAssembler *masm) { 531 Label L; 532 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); 533 __ jcc(Assembler::equal, L); 534 535 // Save the current stack pointer 536 __ mov(r13, rsp); 537 // Schedule the branch target address early. 538 // Call into the VM to patch the caller, then jump to compiled callee 539 // rax isn't live so capture return address while we easily can 540 __ movptr(rax, Address(rsp, 0)); 541 542 // align stack so push_CPU_state doesn't fault 543 __ andptr(rsp, -(StackAlignmentInBytes)); 544 __ push_CPU_state(); 545 __ vzeroupper(); 546 // VM needs caller's callsite 547 // VM needs target method 548 // This needs to be a long call since we will relocate this adapter to 549 // the codeBuffer and it may not reach 550 551 // Allocate argument register save area 552 if (frame::arg_reg_save_area_bytes != 0) { 553 __ subptr(rsp, frame::arg_reg_save_area_bytes); 554 } 555 __ mov(c_rarg0, rbx); 556 __ mov(c_rarg1, rax); 557 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 558 559 // De-allocate argument register save area 560 if (frame::arg_reg_save_area_bytes != 0) { 561 __ addptr(rsp, frame::arg_reg_save_area_bytes); 562 } 563 564 __ vzeroupper(); 565 __ pop_CPU_state(); 566 // restore sp 567 __ mov(rsp, r13); 568 __ bind(L); 569 } 570 571 572 static void gen_c2i_adapter(MacroAssembler *masm, 573 int total_args_passed, 574 int comp_args_on_stack, 575 const BasicType *sig_bt, 576 const VMRegPair *regs, 577 Label& skip_fixup) { 578 // Before we get into the guts of the C2I adapter, see if we should be here 579 // at all. We've come from compiled code and are attempting to jump to the 580 // interpreter, which means the caller made a static call to get here 581 // (vcalls always get a compiled target if there is one). Check for a 582 // compiled target. If there is one, we need to patch the caller's call. 583 patch_callers_callsite(masm); 584 585 __ bind(skip_fixup); 586 587 // Since all args are passed on the stack, total_args_passed * 588 // Interpreter::stackElementSize is the space we need. Plus 1 because 589 // we also account for the return address location since 590 // we store it first rather than hold it in rax across all the shuffling 591 592 int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize; 593 594 // stack is aligned, keep it that way 595 extraspace = align_up(extraspace, 2*wordSize); 596 597 // Get return address 598 __ pop(rax); 599 600 // set senderSP value 601 __ mov(r13, rsp); 602 603 __ subptr(rsp, extraspace); 604 605 // Store the return address in the expected location 606 __ movptr(Address(rsp, 0), rax); 607 608 // Now write the args into the outgoing interpreter space 609 for (int i = 0; i < total_args_passed; i++) { 610 if (sig_bt[i] == T_VOID) { 611 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 612 continue; 613 } 614 615 // offset to start parameters 616 int st_off = (total_args_passed - i) * Interpreter::stackElementSize; 617 int next_off = st_off - Interpreter::stackElementSize; 618 619 // Say 4 args: 620 // i st_off 621 // 0 32 T_LONG 622 // 1 24 T_VOID 623 // 2 16 T_OBJECT 624 // 3 8 T_BOOL 625 // - 0 return address 626 // 627 // However to make thing extra confusing. Because we can fit a long/double in 628 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 629 // leaves one slot empty and only stores to a single slot. In this case the 630 // slot that is occupied is the T_VOID slot. See I said it was confusing. 631 632 VMReg r_1 = regs[i].first(); 633 VMReg r_2 = regs[i].second(); 634 if (!r_1->is_valid()) { 635 assert(!r_2->is_valid(), ""); 636 continue; 637 } 638 if (r_1->is_stack()) { 639 // memory to memory use rax 640 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 641 if (!r_2->is_valid()) { 642 // sign extend?? 643 __ movl(rax, Address(rsp, ld_off)); 644 __ movptr(Address(rsp, st_off), rax); 645 646 } else { 647 648 __ movq(rax, Address(rsp, ld_off)); 649 650 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 651 // T_DOUBLE and T_LONG use two slots in the interpreter 652 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 653 // ld_off == LSW, ld_off+wordSize == MSW 654 // st_off == MSW, next_off == LSW 655 __ movq(Address(rsp, next_off), rax); 656 #ifdef ASSERT 657 // Overwrite the unused slot with known junk 658 __ mov64(rax, CONST64(0xdeadffffdeadaaaa)); 659 __ movptr(Address(rsp, st_off), rax); 660 #endif /* ASSERT */ 661 } else { 662 __ movq(Address(rsp, st_off), rax); 663 } 664 } 665 } else if (r_1->is_Register()) { 666 Register r = r_1->as_Register(); 667 if (!r_2->is_valid()) { 668 // must be only an int (or less ) so move only 32bits to slot 669 // why not sign extend?? 670 __ movl(Address(rsp, st_off), r); 671 } else { 672 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 673 // T_DOUBLE and T_LONG use two slots in the interpreter 674 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 675 // long/double in gpr 676 #ifdef ASSERT 677 // Overwrite the unused slot with known junk 678 __ mov64(rax, CONST64(0xdeadffffdeadaaab)); 679 __ movptr(Address(rsp, st_off), rax); 680 #endif /* ASSERT */ 681 __ movq(Address(rsp, next_off), r); 682 } else { 683 __ movptr(Address(rsp, st_off), r); 684 } 685 } 686 } else { 687 assert(r_1->is_XMMRegister(), ""); 688 if (!r_2->is_valid()) { 689 // only a float use just part of the slot 690 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister()); 691 } else { 692 #ifdef ASSERT 693 // Overwrite the unused slot with known junk 694 __ mov64(rax, CONST64(0xdeadffffdeadaaac)); 695 __ movptr(Address(rsp, st_off), rax); 696 #endif /* ASSERT */ 697 __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister()); 698 } 699 } 700 } 701 702 // Schedule the branch target address early. 703 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset()))); 704 __ jmp(rcx); 705 } 706 707 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, 708 address code_start, address code_end, 709 Label& L_ok) { 710 Label L_fail; 711 __ lea(temp_reg, ExternalAddress(code_start)); 712 __ cmpptr(pc_reg, temp_reg); 713 __ jcc(Assembler::belowEqual, L_fail); 714 __ lea(temp_reg, ExternalAddress(code_end)); 715 __ cmpptr(pc_reg, temp_reg); 716 __ jcc(Assembler::below, L_ok); 717 __ bind(L_fail); 718 } 719 720 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 721 int total_args_passed, 722 int comp_args_on_stack, 723 const BasicType *sig_bt, 724 const VMRegPair *regs) { 725 726 // Note: r13 contains the senderSP on entry. We must preserve it since 727 // we may do a i2c -> c2i transition if we lose a race where compiled 728 // code goes non-entrant while we get args ready. 729 // In addition we use r13 to locate all the interpreter args as 730 // we must align the stack to 16 bytes on an i2c entry else we 731 // lose alignment we expect in all compiled code and register 732 // save code can segv when fxsave instructions find improperly 733 // aligned stack pointer. 734 735 // Adapters can be frameless because they do not require the caller 736 // to perform additional cleanup work, such as correcting the stack pointer. 737 // An i2c adapter is frameless because the *caller* frame, which is interpreted, 738 // routinely repairs its own stack pointer (from interpreter_frame_last_sp), 739 // even if a callee has modified the stack pointer. 740 // A c2i adapter is frameless because the *callee* frame, which is interpreted, 741 // routinely repairs its caller's stack pointer (from sender_sp, which is set 742 // up via the senderSP register). 743 // In other words, if *either* the caller or callee is interpreted, we can 744 // get the stack pointer repaired after a call. 745 // This is why c2i and i2c adapters cannot be indefinitely composed. 746 // In particular, if a c2i adapter were to somehow call an i2c adapter, 747 // both caller and callee would be compiled methods, and neither would 748 // clean up the stack pointer changes performed by the two adapters. 749 // If this happens, control eventually transfers back to the compiled 750 // caller, but with an uncorrected stack, causing delayed havoc. 751 752 // Pick up the return address 753 __ movptr(rax, Address(rsp, 0)); 754 755 if (VerifyAdapterCalls && 756 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { 757 // So, let's test for cascading c2i/i2c adapters right now. 758 // assert(Interpreter::contains($return_addr) || 759 // StubRoutines::contains($return_addr), 760 // "i2c adapter must return to an interpreter frame"); 761 __ block_comment("verify_i2c { "); 762 Label L_ok; 763 if (Interpreter::code() != NULL) 764 range_check(masm, rax, r11, 765 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 766 L_ok); 767 if (StubRoutines::code1() != NULL) 768 range_check(masm, rax, r11, 769 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), 770 L_ok); 771 if (StubRoutines::code2() != NULL) 772 range_check(masm, rax, r11, 773 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), 774 L_ok); 775 const char* msg = "i2c adapter must return to an interpreter frame"; 776 __ block_comment(msg); 777 __ stop(msg); 778 __ bind(L_ok); 779 __ block_comment("} verify_i2ce "); 780 } 781 782 // Must preserve original SP for loading incoming arguments because 783 // we need to align the outgoing SP for compiled code. 784 __ movptr(r11, rsp); 785 786 // Cut-out for having no stack args. Since up to 2 int/oop args are passed 787 // in registers, we will occasionally have no stack args. 788 int comp_words_on_stack = 0; 789 if (comp_args_on_stack) { 790 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in 791 // registers are below. By subtracting stack0, we either get a negative 792 // number (all values in registers) or the maximum stack slot accessed. 793 794 // Convert 4-byte c2 stack slots to words. 795 comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; 796 // Round up to miminum stack alignment, in wordSize 797 comp_words_on_stack = align_up(comp_words_on_stack, 2); 798 __ subptr(rsp, comp_words_on_stack * wordSize); 799 } 800 801 802 // Ensure compiled code always sees stack at proper alignment 803 __ andptr(rsp, -16); 804 805 // push the return address and misalign the stack that youngest frame always sees 806 // as far as the placement of the call instruction 807 __ push(rax); 808 809 // Put saved SP in another register 810 const Register saved_sp = rax; 811 __ movptr(saved_sp, r11); 812 813 // Will jump to the compiled code just as if compiled code was doing it. 814 // Pre-load the register-jump target early, to schedule it better. 815 __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset()))); 816 817 #if INCLUDE_JVMCI 818 if (EnableJVMCI || UseAOT) { 819 // check if this call should be routed towards a specific entry point 820 __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0); 821 Label no_alternative_target; 822 __ jcc(Assembler::equal, no_alternative_target); 823 __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 824 __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0); 825 __ bind(no_alternative_target); 826 } 827 #endif // INCLUDE_JVMCI 828 829 // Now generate the shuffle code. Pick up all register args and move the 830 // rest through the floating point stack top. 831 for (int i = 0; i < total_args_passed; i++) { 832 if (sig_bt[i] == T_VOID) { 833 // Longs and doubles are passed in native word order, but misaligned 834 // in the 32-bit build. 835 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 836 continue; 837 } 838 839 // Pick up 0, 1 or 2 words from SP+offset. 840 841 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 842 "scrambled load targets?"); 843 // Load in argument order going down. 844 int ld_off = (total_args_passed - i)*Interpreter::stackElementSize; 845 // Point to interpreter value (vs. tag) 846 int next_off = ld_off - Interpreter::stackElementSize; 847 // 848 // 849 // 850 VMReg r_1 = regs[i].first(); 851 VMReg r_2 = regs[i].second(); 852 if (!r_1->is_valid()) { 853 assert(!r_2->is_valid(), ""); 854 continue; 855 } 856 if (r_1->is_stack()) { 857 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 858 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize; 859 860 // We can use r13 as a temp here because compiled code doesn't need r13 as an input 861 // and if we end up going thru a c2i because of a miss a reasonable value of r13 862 // will be generated. 863 if (!r_2->is_valid()) { 864 // sign extend??? 865 __ movl(r13, Address(saved_sp, ld_off)); 866 __ movptr(Address(rsp, st_off), r13); 867 } else { 868 // 869 // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 870 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 871 // So we must adjust where to pick up the data to match the interpreter. 872 // 873 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 874 // are accessed as negative so LSW is at LOW address 875 876 // ld_off is MSW so get LSW 877 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 878 next_off : ld_off; 879 __ movq(r13, Address(saved_sp, offset)); 880 // st_off is LSW (i.e. reg.first()) 881 __ movq(Address(rsp, st_off), r13); 882 } 883 } else if (r_1->is_Register()) { // Register argument 884 Register r = r_1->as_Register(); 885 assert(r != rax, "must be different"); 886 if (r_2->is_valid()) { 887 // 888 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 889 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 890 // So we must adjust where to pick up the data to match the interpreter. 891 892 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 893 next_off : ld_off; 894 895 // this can be a misaligned move 896 __ movq(r, Address(saved_sp, offset)); 897 } else { 898 // sign extend and use a full word? 899 __ movl(r, Address(saved_sp, ld_off)); 900 } 901 } else { 902 if (!r_2->is_valid()) { 903 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off)); 904 } else { 905 __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off)); 906 } 907 } 908 } 909 910 // 6243940 We might end up in handle_wrong_method if 911 // the callee is deoptimized as we race thru here. If that 912 // happens we don't want to take a safepoint because the 913 // caller frame will look interpreted and arguments are now 914 // "compiled" so it is much better to make this transition 915 // invisible to the stack walking code. Unfortunately if 916 // we try and find the callee by normal means a safepoint 917 // is possible. So we stash the desired callee in the thread 918 // and the vm will find there should this case occur. 919 920 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); 921 922 // put Method* where a c2i would expect should we end up there 923 // only needed becaus eof c2 resolve stubs return Method* as a result in 924 // rax 925 __ mov(rax, rbx); 926 __ jmp(r11); 927 } 928 929 // --------------------------------------------------------------- 930 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 931 int total_args_passed, 932 int comp_args_on_stack, 933 const BasicType *sig_bt, 934 const VMRegPair *regs, 935 AdapterFingerPrint* fingerprint) { 936 address i2c_entry = __ pc(); 937 938 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 939 940 // ------------------------------------------------------------------------- 941 // Generate a C2I adapter. On entry we know rbx holds the Method* during calls 942 // to the interpreter. The args start out packed in the compiled layout. They 943 // need to be unpacked into the interpreter layout. This will almost always 944 // require some stack space. We grow the current (compiled) stack, then repack 945 // the args. We finally end in a jump to the generic interpreter entry point. 946 // On exit from the interpreter, the interpreter will restore our SP (lest the 947 // compiled code, which relys solely on SP and not RBP, get sick). 948 949 address c2i_unverified_entry = __ pc(); 950 Label skip_fixup; 951 Label ok; 952 953 Register holder = rax; 954 Register receiver = j_rarg0; 955 Register temp = rbx; 956 957 { 958 __ load_klass(temp, receiver); 959 __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset())); 960 __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset())); 961 __ jcc(Assembler::equal, ok); 962 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 963 964 __ bind(ok); 965 // Method might have been compiled since the call site was patched to 966 // interpreted if that is the case treat it as a miss so we can get 967 // the call site corrected. 968 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); 969 __ jcc(Assembler::equal, skip_fixup); 970 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 971 } 972 973 address c2i_entry = __ pc(); 974 975 // Class initialization barrier for static methods 976 address c2i_no_clinit_check_entry = NULL; 977 if (VM_Version::supports_fast_class_init_checks()) { 978 Label L_skip_barrier; 979 Register method = rbx; 980 981 { // Bypass the barrier for non-static methods 982 Register flags = rscratch1; 983 __ movl(flags, Address(method, Method::access_flags_offset())); 984 __ testl(flags, JVM_ACC_STATIC); 985 __ jcc(Assembler::zero, L_skip_barrier); // non-static 986 } 987 988 Register klass = rscratch1; 989 __ load_method_holder(klass, method); 990 __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/); 991 992 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path 993 994 __ bind(L_skip_barrier); 995 c2i_no_clinit_check_entry = __ pc(); 996 } 997 998 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 999 bs->c2i_entry_barrier(masm); 1000 1001 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 1002 1003 __ flush(); 1004 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 1005 } 1006 1007 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 1008 VMRegPair *regs, 1009 VMRegPair *regs2, 1010 int total_args_passed) { 1011 assert(regs2 == NULL, "not needed on x86"); 1012 // We return the amount of VMRegImpl stack slots we need to reserve for all 1013 // the arguments NOT counting out_preserve_stack_slots. 1014 1015 // NOTE: These arrays will have to change when c1 is ported 1016 #ifdef _WIN64 1017 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 1018 c_rarg0, c_rarg1, c_rarg2, c_rarg3 1019 }; 1020 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 1021 c_farg0, c_farg1, c_farg2, c_farg3 1022 }; 1023 #else 1024 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 1025 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5 1026 }; 1027 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 1028 c_farg0, c_farg1, c_farg2, c_farg3, 1029 c_farg4, c_farg5, c_farg6, c_farg7 1030 }; 1031 #endif // _WIN64 1032 1033 1034 uint int_args = 0; 1035 uint fp_args = 0; 1036 uint stk_args = 0; // inc by 2 each time 1037 1038 for (int i = 0; i < total_args_passed; i++) { 1039 switch (sig_bt[i]) { 1040 case T_BOOLEAN: 1041 case T_CHAR: 1042 case T_BYTE: 1043 case T_SHORT: 1044 case T_INT: 1045 if (int_args < Argument::n_int_register_parameters_c) { 1046 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 1047 #ifdef _WIN64 1048 fp_args++; 1049 // Allocate slots for callee to stuff register args the stack. 1050 stk_args += 2; 1051 #endif 1052 } else { 1053 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1054 stk_args += 2; 1055 } 1056 break; 1057 case T_LONG: 1058 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1059 // fall through 1060 case T_OBJECT: 1061 case T_ARRAY: 1062 case T_ADDRESS: 1063 case T_METADATA: 1064 if (int_args < Argument::n_int_register_parameters_c) { 1065 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 1066 #ifdef _WIN64 1067 fp_args++; 1068 stk_args += 2; 1069 #endif 1070 } else { 1071 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1072 stk_args += 2; 1073 } 1074 break; 1075 case T_FLOAT: 1076 if (fp_args < Argument::n_float_register_parameters_c) { 1077 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 1078 #ifdef _WIN64 1079 int_args++; 1080 // Allocate slots for callee to stuff register args the stack. 1081 stk_args += 2; 1082 #endif 1083 } else { 1084 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1085 stk_args += 2; 1086 } 1087 break; 1088 case T_DOUBLE: 1089 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1090 if (fp_args < Argument::n_float_register_parameters_c) { 1091 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 1092 #ifdef _WIN64 1093 int_args++; 1094 // Allocate slots for callee to stuff register args the stack. 1095 stk_args += 2; 1096 #endif 1097 } else { 1098 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1099 stk_args += 2; 1100 } 1101 break; 1102 case T_VOID: // Halves of longs and doubles 1103 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 1104 regs[i].set_bad(); 1105 break; 1106 default: 1107 ShouldNotReachHere(); 1108 break; 1109 } 1110 } 1111 #ifdef _WIN64 1112 // windows abi requires that we always allocate enough stack space 1113 // for 4 64bit registers to be stored down. 1114 if (stk_args < 8) { 1115 stk_args = 8; 1116 } 1117 #endif // _WIN64 1118 1119 return stk_args; 1120 } 1121 1122 // On 64 bit we will store integer like items to the stack as 1123 // 64 bits items (sparc abi) even though java would only store 1124 // 32bits for a parameter. On 32bit it will simply be 32 bits 1125 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 1126 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1127 if (src.first()->is_stack()) { 1128 if (dst.first()->is_stack()) { 1129 // stack to stack 1130 __ movslq(rax, Address(rbp, reg2offset_in(src.first()))); 1131 __ movq(Address(rsp, reg2offset_out(dst.first())), rax); 1132 } else { 1133 // stack to reg 1134 __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1135 } 1136 } else if (dst.first()->is_stack()) { 1137 // reg to stack 1138 // Do we really have to sign extend??? 1139 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 1140 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1141 } else { 1142 // Do we really have to sign extend??? 1143 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 1144 if (dst.first() != src.first()) { 1145 __ movq(dst.first()->as_Register(), src.first()->as_Register()); 1146 } 1147 } 1148 } 1149 1150 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1151 if (src.first()->is_stack()) { 1152 if (dst.first()->is_stack()) { 1153 // stack to stack 1154 __ movq(rax, Address(rbp, reg2offset_in(src.first()))); 1155 __ movq(Address(rsp, reg2offset_out(dst.first())), rax); 1156 } else { 1157 // stack to reg 1158 __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1159 } 1160 } else if (dst.first()->is_stack()) { 1161 // reg to stack 1162 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1163 } else { 1164 if (dst.first() != src.first()) { 1165 __ movq(dst.first()->as_Register(), src.first()->as_Register()); 1166 } 1167 } 1168 } 1169 1170 // An oop arg. Must pass a handle not the oop itself 1171 static void object_move(MacroAssembler* masm, 1172 OopMap* map, 1173 int oop_handle_offset, 1174 int framesize_in_slots, 1175 VMRegPair src, 1176 VMRegPair dst, 1177 bool is_receiver, 1178 int* receiver_offset) { 1179 1180 // must pass a handle. First figure out the location we use as a handle 1181 1182 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1183 1184 // See if oop is NULL if it is we need no handle 1185 1186 if (src.first()->is_stack()) { 1187 1188 // Oop is already on the stack as an argument 1189 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1190 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1191 if (is_receiver) { 1192 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1193 } 1194 1195 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD); 1196 __ lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1197 // conditionally move a NULL 1198 __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1199 } else { 1200 1201 // Oop is in an a register we must store it to the space we reserve 1202 // on the stack for oop_handles and pass a handle if oop is non-NULL 1203 1204 const Register rOop = src.first()->as_Register(); 1205 int oop_slot; 1206 if (rOop == j_rarg0) 1207 oop_slot = 0; 1208 else if (rOop == j_rarg1) 1209 oop_slot = 1; 1210 else if (rOop == j_rarg2) 1211 oop_slot = 2; 1212 else if (rOop == j_rarg3) 1213 oop_slot = 3; 1214 else if (rOop == j_rarg4) 1215 oop_slot = 4; 1216 else { 1217 assert(rOop == j_rarg5, "wrong register"); 1218 oop_slot = 5; 1219 } 1220 1221 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1222 int offset = oop_slot*VMRegImpl::stack_slot_size; 1223 1224 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1225 // Store oop in handle area, may be NULL 1226 __ movptr(Address(rsp, offset), rOop); 1227 if (is_receiver) { 1228 *receiver_offset = offset; 1229 } 1230 1231 __ cmpptr(rOop, (int32_t)NULL_WORD); 1232 __ lea(rHandle, Address(rsp, offset)); 1233 // conditionally move a NULL from the handle area where it was just stored 1234 __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1235 } 1236 1237 // If arg is on the stack then place it otherwise it is already in correct reg. 1238 if (dst.first()->is_stack()) { 1239 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1240 } 1241 } 1242 1243 // A float arg may have to do float reg int reg conversion 1244 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1245 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 1246 1247 // The calling conventions assures us that each VMregpair is either 1248 // all really one physical register or adjacent stack slots. 1249 // This greatly simplifies the cases here compared to sparc. 1250 1251 if (src.first()->is_stack()) { 1252 if (dst.first()->is_stack()) { 1253 __ movl(rax, Address(rbp, reg2offset_in(src.first()))); 1254 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1255 } else { 1256 // stack to reg 1257 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 1258 __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()))); 1259 } 1260 } else if (dst.first()->is_stack()) { 1261 // reg to stack 1262 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 1263 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1264 } else { 1265 // reg to reg 1266 // In theory these overlap but the ordering is such that this is likely a nop 1267 if ( src.first() != dst.first()) { 1268 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 1269 } 1270 } 1271 } 1272 1273 // A long move 1274 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1275 1276 // The calling conventions assures us that each VMregpair is either 1277 // all really one physical register or adjacent stack slots. 1278 // This greatly simplifies the cases here compared to sparc. 1279 1280 if (src.is_single_phys_reg() ) { 1281 if (dst.is_single_phys_reg()) { 1282 if (dst.first() != src.first()) { 1283 __ mov(dst.first()->as_Register(), src.first()->as_Register()); 1284 } 1285 } else { 1286 assert(dst.is_single_reg(), "not a stack pair"); 1287 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1288 } 1289 } else if (dst.is_single_phys_reg()) { 1290 assert(src.is_single_reg(), "not a stack pair"); 1291 __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first()))); 1292 } else { 1293 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 1294 __ movq(rax, Address(rbp, reg2offset_in(src.first()))); 1295 __ movq(Address(rsp, reg2offset_out(dst.first())), rax); 1296 } 1297 } 1298 1299 // A double move 1300 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1301 1302 // The calling conventions assures us that each VMregpair is either 1303 // all really one physical register or adjacent stack slots. 1304 // This greatly simplifies the cases here compared to sparc. 1305 1306 if (src.is_single_phys_reg() ) { 1307 if (dst.is_single_phys_reg()) { 1308 // In theory these overlap but the ordering is such that this is likely a nop 1309 if ( src.first() != dst.first()) { 1310 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 1311 } 1312 } else { 1313 assert(dst.is_single_reg(), "not a stack pair"); 1314 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1315 } 1316 } else if (dst.is_single_phys_reg()) { 1317 assert(src.is_single_reg(), "not a stack pair"); 1318 __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first()))); 1319 } else { 1320 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 1321 __ movq(rax, Address(rbp, reg2offset_in(src.first()))); 1322 __ movq(Address(rsp, reg2offset_out(dst.first())), rax); 1323 } 1324 } 1325 1326 1327 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1328 // We always ignore the frame_slots arg and just use the space just below frame pointer 1329 // which by this time is free to use 1330 switch (ret_type) { 1331 case T_FLOAT: 1332 __ movflt(Address(rbp, -wordSize), xmm0); 1333 break; 1334 case T_DOUBLE: 1335 __ movdbl(Address(rbp, -wordSize), xmm0); 1336 break; 1337 case T_VOID: break; 1338 default: { 1339 __ movptr(Address(rbp, -wordSize), rax); 1340 } 1341 } 1342 } 1343 1344 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1345 // We always ignore the frame_slots arg and just use the space just below frame pointer 1346 // which by this time is free to use 1347 switch (ret_type) { 1348 case T_FLOAT: 1349 __ movflt(xmm0, Address(rbp, -wordSize)); 1350 break; 1351 case T_DOUBLE: 1352 __ movdbl(xmm0, Address(rbp, -wordSize)); 1353 break; 1354 case T_VOID: break; 1355 default: { 1356 __ movptr(rax, Address(rbp, -wordSize)); 1357 } 1358 } 1359 } 1360 1361 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1362 for ( int i = first_arg ; i < arg_count ; i++ ) { 1363 if (args[i].first()->is_Register()) { 1364 __ push(args[i].first()->as_Register()); 1365 } else if (args[i].first()->is_XMMRegister()) { 1366 __ subptr(rsp, 2*wordSize); 1367 __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister()); 1368 } 1369 } 1370 } 1371 1372 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1373 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 1374 if (args[i].first()->is_Register()) { 1375 __ pop(args[i].first()->as_Register()); 1376 } else if (args[i].first()->is_XMMRegister()) { 1377 __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0)); 1378 __ addptr(rsp, 2*wordSize); 1379 } 1380 } 1381 } 1382 1383 1384 static void save_or_restore_arguments(MacroAssembler* masm, 1385 const int stack_slots, 1386 const int total_in_args, 1387 const int arg_save_area, 1388 OopMap* map, 1389 VMRegPair* in_regs, 1390 BasicType* in_sig_bt) { 1391 // if map is non-NULL then the code should store the values, 1392 // otherwise it should load them. 1393 int slot = arg_save_area; 1394 // Save down double word first 1395 for ( int i = 0; i < total_in_args; i++) { 1396 if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) { 1397 int offset = slot * VMRegImpl::stack_slot_size; 1398 slot += VMRegImpl::slots_per_word; 1399 assert(slot <= stack_slots, "overflow"); 1400 if (map != NULL) { 1401 __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); 1402 } else { 1403 __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); 1404 } 1405 } 1406 if (in_regs[i].first()->is_Register() && 1407 (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) { 1408 int offset = slot * VMRegImpl::stack_slot_size; 1409 if (map != NULL) { 1410 __ movq(Address(rsp, offset), in_regs[i].first()->as_Register()); 1411 if (in_sig_bt[i] == T_ARRAY) { 1412 map->set_oop(VMRegImpl::stack2reg(slot));; 1413 } 1414 } else { 1415 __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset)); 1416 } 1417 slot += VMRegImpl::slots_per_word; 1418 } 1419 } 1420 // Save or restore single word registers 1421 for ( int i = 0; i < total_in_args; i++) { 1422 if (in_regs[i].first()->is_Register()) { 1423 int offset = slot * VMRegImpl::stack_slot_size; 1424 slot++; 1425 assert(slot <= stack_slots, "overflow"); 1426 1427 // Value is in an input register pass we must flush it to the stack 1428 const Register reg = in_regs[i].first()->as_Register(); 1429 switch (in_sig_bt[i]) { 1430 case T_BOOLEAN: 1431 case T_CHAR: 1432 case T_BYTE: 1433 case T_SHORT: 1434 case T_INT: 1435 if (map != NULL) { 1436 __ movl(Address(rsp, offset), reg); 1437 } else { 1438 __ movl(reg, Address(rsp, offset)); 1439 } 1440 break; 1441 case T_ARRAY: 1442 case T_LONG: 1443 // handled above 1444 break; 1445 case T_OBJECT: 1446 default: ShouldNotReachHere(); 1447 } 1448 } else if (in_regs[i].first()->is_XMMRegister()) { 1449 if (in_sig_bt[i] == T_FLOAT) { 1450 int offset = slot * VMRegImpl::stack_slot_size; 1451 slot++; 1452 assert(slot <= stack_slots, "overflow"); 1453 if (map != NULL) { 1454 __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); 1455 } else { 1456 __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); 1457 } 1458 } 1459 } else if (in_regs[i].first()->is_stack()) { 1460 if (in_sig_bt[i] == T_ARRAY && map != NULL) { 1461 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1462 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots)); 1463 } 1464 } 1465 } 1466 } 1467 1468 // Pin object, return pinned object or null in rax 1469 static void gen_pin_object(MacroAssembler* masm, 1470 VMRegPair reg) { 1471 __ block_comment("gen_pin_object {"); 1472 1473 // rax always contains oop, either incoming or 1474 // pinned. 1475 Register tmp_reg = rax; 1476 1477 Label is_null; 1478 VMRegPair tmp; 1479 VMRegPair in_reg = reg; 1480 1481 tmp.set_ptr(tmp_reg->as_VMReg()); 1482 if (reg.first()->is_stack()) { 1483 // Load the arg up from the stack 1484 move_ptr(masm, reg, tmp); 1485 reg = tmp; 1486 } else { 1487 __ movptr(rax, reg.first()->as_Register()); 1488 } 1489 __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); 1490 __ jccb(Assembler::equal, is_null); 1491 1492 if (reg.first()->as_Register() != c_rarg1) { 1493 __ movptr(c_rarg1, reg.first()->as_Register()); 1494 } 1495 1496 __ call_VM_leaf( 1497 CAST_FROM_FN_PTR(address, SharedRuntime::pin_object), 1498 r15_thread, c_rarg1); 1499 1500 __ bind(is_null); 1501 __ block_comment("} gen_pin_object"); 1502 } 1503 1504 // Unpin object 1505 static void gen_unpin_object(MacroAssembler* masm, 1506 VMRegPair reg) { 1507 __ block_comment("gen_unpin_object {"); 1508 Label is_null; 1509 1510 if (reg.first()->is_stack()) { 1511 __ movptr(c_rarg1, Address(rbp, reg2offset_in(reg.first()))); 1512 } else if (reg.first()->as_Register() != c_rarg1) { 1513 __ movptr(c_rarg1, reg.first()->as_Register()); 1514 } 1515 1516 __ testptr(c_rarg1, c_rarg1); 1517 __ jccb(Assembler::equal, is_null); 1518 1519 __ call_VM_leaf( 1520 CAST_FROM_FN_PTR(address, SharedRuntime::unpin_object), 1521 r15_thread, c_rarg1); 1522 1523 __ bind(is_null); 1524 __ block_comment("} gen_unpin_object"); 1525 } 1526 1527 // Check GCLocker::needs_gc and enter the runtime if it's true. This 1528 // keeps a new JNI critical region from starting until a GC has been 1529 // forced. Save down any oops in registers and describe them in an 1530 // OopMap. 1531 static void check_needs_gc_for_critical_native(MacroAssembler* masm, 1532 int stack_slots, 1533 int total_c_args, 1534 int total_in_args, 1535 int arg_save_area, 1536 OopMapSet* oop_maps, 1537 VMRegPair* in_regs, 1538 BasicType* in_sig_bt) { 1539 __ block_comment("check GCLocker::needs_gc"); 1540 Label cont; 1541 __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false); 1542 __ jcc(Assembler::equal, cont); 1543 1544 // Save down any incoming oops and call into the runtime to halt for a GC 1545 1546 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1547 save_or_restore_arguments(masm, stack_slots, total_in_args, 1548 arg_save_area, map, in_regs, in_sig_bt); 1549 1550 address the_pc = __ pc(); 1551 oop_maps->add_gc_map( __ offset(), map); 1552 __ set_last_Java_frame(rsp, noreg, the_pc); 1553 1554 __ block_comment("block_for_jni_critical"); 1555 __ movptr(c_rarg0, r15_thread); 1556 __ mov(r12, rsp); // remember sp 1557 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1558 __ andptr(rsp, -16); // align stack as required by ABI 1559 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical))); 1560 __ mov(rsp, r12); // restore sp 1561 __ reinit_heapbase(); 1562 1563 __ reset_last_Java_frame(false); 1564 1565 save_or_restore_arguments(masm, stack_slots, total_in_args, 1566 arg_save_area, NULL, in_regs, in_sig_bt); 1567 __ bind(cont); 1568 #ifdef ASSERT 1569 if (StressCriticalJNINatives) { 1570 // Stress register saving 1571 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1572 save_or_restore_arguments(masm, stack_slots, total_in_args, 1573 arg_save_area, map, in_regs, in_sig_bt); 1574 // Destroy argument registers 1575 for (int i = 0; i < total_in_args - 1; i++) { 1576 if (in_regs[i].first()->is_Register()) { 1577 const Register reg = in_regs[i].first()->as_Register(); 1578 __ xorptr(reg, reg); 1579 } else if (in_regs[i].first()->is_XMMRegister()) { 1580 __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister()); 1581 } else if (in_regs[i].first()->is_FloatRegister()) { 1582 ShouldNotReachHere(); 1583 } else if (in_regs[i].first()->is_stack()) { 1584 // Nothing to do 1585 } else { 1586 ShouldNotReachHere(); 1587 } 1588 if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) { 1589 i++; 1590 } 1591 } 1592 1593 save_or_restore_arguments(masm, stack_slots, total_in_args, 1594 arg_save_area, NULL, in_regs, in_sig_bt); 1595 } 1596 #endif 1597 } 1598 1599 // Unpack an array argument into a pointer to the body and the length 1600 // if the array is non-null, otherwise pass 0 for both. 1601 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { 1602 Register tmp_reg = rax; 1603 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg, 1604 "possible collision"); 1605 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg, 1606 "possible collision"); 1607 1608 __ block_comment("unpack_array_argument {"); 1609 1610 // Pass the length, ptr pair 1611 Label is_null, done; 1612 VMRegPair tmp; 1613 tmp.set_ptr(tmp_reg->as_VMReg()); 1614 if (reg.first()->is_stack()) { 1615 // Load the arg up from the stack 1616 move_ptr(masm, reg, tmp); 1617 reg = tmp; 1618 } 1619 __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); 1620 __ jccb(Assembler::equal, is_null); 1621 __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type))); 1622 move_ptr(masm, tmp, body_arg); 1623 // load the length relative to the body. 1624 __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() - 1625 arrayOopDesc::base_offset_in_bytes(in_elem_type))); 1626 move32_64(masm, tmp, length_arg); 1627 __ jmpb(done); 1628 __ bind(is_null); 1629 // Pass zeros 1630 __ xorptr(tmp_reg, tmp_reg); 1631 move_ptr(masm, tmp, body_arg); 1632 move32_64(masm, tmp, length_arg); 1633 __ bind(done); 1634 1635 __ block_comment("} unpack_array_argument"); 1636 } 1637 1638 1639 // Different signatures may require very different orders for the move 1640 // to avoid clobbering other arguments. There's no simple way to 1641 // order them safely. Compute a safe order for issuing stores and 1642 // break any cycles in those stores. This code is fairly general but 1643 // it's not necessary on the other platforms so we keep it in the 1644 // platform dependent code instead of moving it into a shared file. 1645 // (See bugs 7013347 & 7145024.) 1646 // Note that this code is specific to LP64. 1647 class ComputeMoveOrder: public StackObj { 1648 class MoveOperation: public ResourceObj { 1649 friend class ComputeMoveOrder; 1650 private: 1651 VMRegPair _src; 1652 VMRegPair _dst; 1653 int _src_index; 1654 int _dst_index; 1655 bool _processed; 1656 MoveOperation* _next; 1657 MoveOperation* _prev; 1658 1659 static int get_id(VMRegPair r) { 1660 return r.first()->value(); 1661 } 1662 1663 public: 1664 MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst): 1665 _src(src) 1666 , _dst(dst) 1667 , _src_index(src_index) 1668 , _dst_index(dst_index) 1669 , _processed(false) 1670 , _next(NULL) 1671 , _prev(NULL) { 1672 } 1673 1674 VMRegPair src() const { return _src; } 1675 int src_id() const { return get_id(src()); } 1676 int src_index() const { return _src_index; } 1677 VMRegPair dst() const { return _dst; } 1678 void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; } 1679 int dst_index() const { return _dst_index; } 1680 int dst_id() const { return get_id(dst()); } 1681 MoveOperation* next() const { return _next; } 1682 MoveOperation* prev() const { return _prev; } 1683 void set_processed() { _processed = true; } 1684 bool is_processed() const { return _processed; } 1685 1686 // insert 1687 void break_cycle(VMRegPair temp_register) { 1688 // create a new store following the last store 1689 // to move from the temp_register to the original 1690 MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst()); 1691 1692 // break the cycle of links and insert new_store at the end 1693 // break the reverse link. 1694 MoveOperation* p = prev(); 1695 assert(p->next() == this, "must be"); 1696 _prev = NULL; 1697 p->_next = new_store; 1698 new_store->_prev = p; 1699 1700 // change the original store to save it's value in the temp. 1701 set_dst(-1, temp_register); 1702 } 1703 1704 void link(GrowableArray<MoveOperation*>& killer) { 1705 // link this store in front the store that it depends on 1706 MoveOperation* n = killer.at_grow(src_id(), NULL); 1707 if (n != NULL) { 1708 assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet"); 1709 _next = n; 1710 n->_prev = this; 1711 } 1712 } 1713 }; 1714 1715 private: 1716 GrowableArray<MoveOperation*> edges; 1717 1718 public: 1719 ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs, 1720 BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) { 1721 // Move operations where the dest is the stack can all be 1722 // scheduled first since they can't interfere with the other moves. 1723 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1724 if (in_sig_bt[i] == T_ARRAY) { 1725 c_arg--; 1726 if (out_regs[c_arg].first()->is_stack() && 1727 out_regs[c_arg + 1].first()->is_stack()) { 1728 arg_order.push(i); 1729 arg_order.push(c_arg); 1730 } else { 1731 if (out_regs[c_arg].first()->is_stack() || 1732 in_regs[i].first() == out_regs[c_arg].first()) { 1733 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]); 1734 } else { 1735 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]); 1736 } 1737 } 1738 } else if (in_sig_bt[i] == T_VOID) { 1739 arg_order.push(i); 1740 arg_order.push(c_arg); 1741 } else { 1742 if (out_regs[c_arg].first()->is_stack() || 1743 in_regs[i].first() == out_regs[c_arg].first()) { 1744 arg_order.push(i); 1745 arg_order.push(c_arg); 1746 } else { 1747 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]); 1748 } 1749 } 1750 } 1751 // Break any cycles in the register moves and emit the in the 1752 // proper order. 1753 GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg); 1754 for (int i = 0; i < stores->length(); i++) { 1755 arg_order.push(stores->at(i)->src_index()); 1756 arg_order.push(stores->at(i)->dst_index()); 1757 } 1758 } 1759 1760 // Collected all the move operations 1761 void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { 1762 if (src.first() == dst.first()) return; 1763 edges.append(new MoveOperation(src_index, src, dst_index, dst)); 1764 } 1765 1766 // Walk the edges breaking cycles between moves. The result list 1767 // can be walked in order to produce the proper set of loads 1768 GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) { 1769 // Record which moves kill which values 1770 GrowableArray<MoveOperation*> killer; 1771 for (int i = 0; i < edges.length(); i++) { 1772 MoveOperation* s = edges.at(i); 1773 assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer"); 1774 killer.at_put_grow(s->dst_id(), s, NULL); 1775 } 1776 assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL, 1777 "make sure temp isn't in the registers that are killed"); 1778 1779 // create links between loads and stores 1780 for (int i = 0; i < edges.length(); i++) { 1781 edges.at(i)->link(killer); 1782 } 1783 1784 // at this point, all the move operations are chained together 1785 // in a doubly linked list. Processing it backwards finds 1786 // the beginning of the chain, forwards finds the end. If there's 1787 // a cycle it can be broken at any point, so pick an edge and walk 1788 // backward until the list ends or we end where we started. 1789 GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>(); 1790 for (int e = 0; e < edges.length(); e++) { 1791 MoveOperation* s = edges.at(e); 1792 if (!s->is_processed()) { 1793 MoveOperation* start = s; 1794 // search for the beginning of the chain or cycle 1795 while (start->prev() != NULL && start->prev() != s) { 1796 start = start->prev(); 1797 } 1798 if (start->prev() == s) { 1799 start->break_cycle(temp_register); 1800 } 1801 // walk the chain forward inserting to store list 1802 while (start != NULL) { 1803 stores->append(start); 1804 start->set_processed(); 1805 start = start->next(); 1806 } 1807 } 1808 } 1809 return stores; 1810 } 1811 }; 1812 1813 static void verify_oop_args(MacroAssembler* masm, 1814 const methodHandle& method, 1815 const BasicType* sig_bt, 1816 const VMRegPair* regs) { 1817 Register temp_reg = rbx; // not part of any compiled calling seq 1818 if (VerifyOops) { 1819 for (int i = 0; i < method->size_of_parameters(); i++) { 1820 if (is_reference_type(sig_bt[i])) { 1821 VMReg r = regs[i].first(); 1822 assert(r->is_valid(), "bad oop arg"); 1823 if (r->is_stack()) { 1824 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1825 __ verify_oop(temp_reg); 1826 } else { 1827 __ verify_oop(r->as_Register()); 1828 } 1829 } 1830 } 1831 } 1832 } 1833 1834 static void gen_special_dispatch(MacroAssembler* masm, 1835 const methodHandle& method, 1836 const BasicType* sig_bt, 1837 const VMRegPair* regs) { 1838 verify_oop_args(masm, method, sig_bt, regs); 1839 vmIntrinsics::ID iid = method->intrinsic_id(); 1840 1841 // Now write the args into the outgoing interpreter space 1842 bool has_receiver = false; 1843 Register receiver_reg = noreg; 1844 int member_arg_pos = -1; 1845 Register member_reg = noreg; 1846 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1847 if (ref_kind != 0) { 1848 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1849 member_reg = rbx; // known to be free at this point 1850 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1851 } else if (iid == vmIntrinsics::_invokeBasic) { 1852 has_receiver = true; 1853 } else { 1854 fatal("unexpected intrinsic id %d", iid); 1855 } 1856 1857 if (member_reg != noreg) { 1858 // Load the member_arg into register, if necessary. 1859 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1860 VMReg r = regs[member_arg_pos].first(); 1861 if (r->is_stack()) { 1862 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1863 } else { 1864 // no data motion is needed 1865 member_reg = r->as_Register(); 1866 } 1867 } 1868 1869 if (has_receiver) { 1870 // Make sure the receiver is loaded into a register. 1871 assert(method->size_of_parameters() > 0, "oob"); 1872 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1873 VMReg r = regs[0].first(); 1874 assert(r->is_valid(), "bad receiver arg"); 1875 if (r->is_stack()) { 1876 // Porting note: This assumes that compiled calling conventions always 1877 // pass the receiver oop in a register. If this is not true on some 1878 // platform, pick a temp and load the receiver from stack. 1879 fatal("receiver always in a register"); 1880 receiver_reg = j_rarg0; // known to be free at this point 1881 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1882 } else { 1883 // no data motion is needed 1884 receiver_reg = r->as_Register(); 1885 } 1886 } 1887 1888 // Figure out which address we are really jumping to: 1889 MethodHandles::generate_method_handle_dispatch(masm, iid, 1890 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1891 } 1892 1893 // --------------------------------------------------------------------------- 1894 // Generate a native wrapper for a given method. The method takes arguments 1895 // in the Java compiled code convention, marshals them to the native 1896 // convention (handlizes oops, etc), transitions to native, makes the call, 1897 // returns to java state (possibly blocking), unhandlizes any result and 1898 // returns. 1899 // 1900 // Critical native functions are a shorthand for the use of 1901 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1902 // functions. The wrapper is expected to unpack the arguments before 1903 // passing them to the callee and perform checks before and after the 1904 // native call to ensure that they GCLocker 1905 // lock_critical/unlock_critical semantics are followed. Some other 1906 // parts of JNI setup are skipped like the tear down of the JNI handle 1907 // block and the check for pending exceptions it's impossible for them 1908 // to be thrown. 1909 // 1910 // They are roughly structured like this: 1911 // if (GCLocker::needs_gc()) 1912 // SharedRuntime::block_for_jni_critical(); 1913 // tranistion to thread_in_native 1914 // unpack arrray arguments and call native entry point 1915 // check for safepoint in progress 1916 // check if any thread suspend flags are set 1917 // call into JVM and possible unlock the JNI critical 1918 // if a GC was suppressed while in the critical native. 1919 // transition back to thread_in_Java 1920 // return to caller 1921 // 1922 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1923 const methodHandle& method, 1924 int compile_id, 1925 BasicType* in_sig_bt, 1926 VMRegPair* in_regs, 1927 BasicType ret_type, 1928 address critical_entry) { 1929 if (method->is_method_handle_intrinsic()) { 1930 vmIntrinsics::ID iid = method->intrinsic_id(); 1931 intptr_t start = (intptr_t)__ pc(); 1932 int vep_offset = ((intptr_t)__ pc()) - start; 1933 gen_special_dispatch(masm, 1934 method, 1935 in_sig_bt, 1936 in_regs); 1937 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1938 __ flush(); 1939 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1940 return nmethod::new_native_nmethod(method, 1941 compile_id, 1942 masm->code(), 1943 vep_offset, 1944 frame_complete, 1945 stack_slots / VMRegImpl::slots_per_word, 1946 in_ByteSize(-1), 1947 in_ByteSize(-1), 1948 (OopMapSet*)NULL); 1949 } 1950 bool is_critical_native = true; 1951 address native_func = critical_entry; 1952 if (native_func == NULL) { 1953 native_func = method->native_function(); 1954 is_critical_native = false; 1955 } 1956 assert(native_func != NULL, "must have function"); 1957 1958 // An OopMap for lock (and class if static) 1959 OopMapSet *oop_maps = new OopMapSet(); 1960 intptr_t start = (intptr_t)__ pc(); 1961 1962 // We have received a description of where all the java arg are located 1963 // on entry to the wrapper. We need to convert these args to where 1964 // the jni function will expect them. To figure out where they go 1965 // we convert the java signature to a C signature by inserting 1966 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1967 1968 const int total_in_args = method->size_of_parameters(); 1969 int total_c_args = total_in_args; 1970 if (!is_critical_native) { 1971 total_c_args += 1; 1972 if (method->is_static()) { 1973 total_c_args++; 1974 } 1975 } else { 1976 for (int i = 0; i < total_in_args; i++) { 1977 if (in_sig_bt[i] == T_ARRAY) { 1978 total_c_args++; 1979 } 1980 } 1981 } 1982 1983 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1984 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1985 BasicType* in_elem_bt = NULL; 1986 1987 int argc = 0; 1988 if (!is_critical_native) { 1989 out_sig_bt[argc++] = T_ADDRESS; 1990 if (method->is_static()) { 1991 out_sig_bt[argc++] = T_OBJECT; 1992 } 1993 1994 for (int i = 0; i < total_in_args ; i++ ) { 1995 out_sig_bt[argc++] = in_sig_bt[i]; 1996 } 1997 } else { 1998 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args); 1999 SignatureStream ss(method->signature()); 2000 for (int i = 0; i < total_in_args ; i++ ) { 2001 if (in_sig_bt[i] == T_ARRAY) { 2002 // Arrays are passed as int, elem* pair 2003 out_sig_bt[argc++] = T_INT; 2004 out_sig_bt[argc++] = T_ADDRESS; 2005 ss.skip_array_prefix(1); // skip one '[' 2006 assert(ss.is_primitive(), "primitive type expected"); 2007 in_elem_bt[i] = ss.type(); 2008 } else { 2009 out_sig_bt[argc++] = in_sig_bt[i]; 2010 in_elem_bt[i] = T_VOID; 2011 } 2012 if (in_sig_bt[i] != T_VOID) { 2013 assert(in_sig_bt[i] == ss.type() || 2014 in_sig_bt[i] == T_ARRAY, "must match"); 2015 ss.next(); 2016 } 2017 } 2018 } 2019 2020 // Now figure out where the args must be stored and how much stack space 2021 // they require. 2022 int out_arg_slots; 2023 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); 2024 2025 // Compute framesize for the wrapper. We need to handlize all oops in 2026 // incoming registers 2027 2028 // Calculate the total number of stack slots we will need. 2029 2030 // First count the abi requirement plus all of the outgoing args 2031 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 2032 2033 // Now the space for the inbound oop handle area 2034 int total_save_slots = 6 * VMRegImpl::slots_per_word; // 6 arguments passed in registers 2035 if (is_critical_native) { 2036 // Critical natives may have to call out so they need a save area 2037 // for register arguments. 2038 int double_slots = 0; 2039 int single_slots = 0; 2040 for ( int i = 0; i < total_in_args; i++) { 2041 if (in_regs[i].first()->is_Register()) { 2042 const Register reg = in_regs[i].first()->as_Register(); 2043 switch (in_sig_bt[i]) { 2044 case T_BOOLEAN: 2045 case T_BYTE: 2046 case T_SHORT: 2047 case T_CHAR: 2048 case T_INT: single_slots++; break; 2049 case T_ARRAY: // specific to LP64 (7145024) 2050 case T_LONG: double_slots++; break; 2051 default: ShouldNotReachHere(); 2052 } 2053 } else if (in_regs[i].first()->is_XMMRegister()) { 2054 switch (in_sig_bt[i]) { 2055 case T_FLOAT: single_slots++; break; 2056 case T_DOUBLE: double_slots++; break; 2057 default: ShouldNotReachHere(); 2058 } 2059 } else if (in_regs[i].first()->is_FloatRegister()) { 2060 ShouldNotReachHere(); 2061 } 2062 } 2063 total_save_slots = double_slots * 2 + single_slots; 2064 // align the save area 2065 if (double_slots != 0) { 2066 stack_slots = align_up(stack_slots, 2); 2067 } 2068 } 2069 2070 int oop_handle_offset = stack_slots; 2071 stack_slots += total_save_slots; 2072 2073 // Now any space we need for handlizing a klass if static method 2074 2075 int klass_slot_offset = 0; 2076 int klass_offset = -1; 2077 int lock_slot_offset = 0; 2078 bool is_static = false; 2079 2080 if (method->is_static()) { 2081 klass_slot_offset = stack_slots; 2082 stack_slots += VMRegImpl::slots_per_word; 2083 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 2084 is_static = true; 2085 } 2086 2087 // Plus a lock if needed 2088 2089 if (method->is_synchronized()) { 2090 lock_slot_offset = stack_slots; 2091 stack_slots += VMRegImpl::slots_per_word; 2092 } 2093 2094 // Now a place (+2) to save return values or temp during shuffling 2095 // + 4 for return address (which we own) and saved rbp 2096 stack_slots += 6; 2097 2098 // Ok The space we have allocated will look like: 2099 // 2100 // 2101 // FP-> | | 2102 // |---------------------| 2103 // | 2 slots for moves | 2104 // |---------------------| 2105 // | lock box (if sync) | 2106 // |---------------------| <- lock_slot_offset 2107 // | klass (if static) | 2108 // |---------------------| <- klass_slot_offset 2109 // | oopHandle area | 2110 // |---------------------| <- oop_handle_offset (6 java arg registers) 2111 // | outbound memory | 2112 // | based arguments | 2113 // | | 2114 // |---------------------| 2115 // | | 2116 // SP-> | out_preserved_slots | 2117 // 2118 // 2119 2120 2121 // Now compute actual number of stack words we need rounding to make 2122 // stack properly aligned. 2123 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 2124 2125 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 2126 2127 // First thing make an ic check to see if we should even be here 2128 2129 // We are free to use all registers as temps without saving them and 2130 // restoring them except rbp. rbp is the only callee save register 2131 // as far as the interpreter and the compiler(s) are concerned. 2132 2133 2134 const Register ic_reg = rax; 2135 const Register receiver = j_rarg0; 2136 2137 Label hit; 2138 Label exception_pending; 2139 2140 assert_different_registers(ic_reg, receiver, rscratch1); 2141 __ verify_oop(receiver); 2142 __ load_klass(rscratch1, receiver); 2143 __ cmpq(ic_reg, rscratch1); 2144 __ jcc(Assembler::equal, hit); 2145 2146 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 2147 2148 // Verified entry point must be aligned 2149 __ align(8); 2150 2151 __ bind(hit); 2152 2153 int vep_offset = ((intptr_t)__ pc()) - start; 2154 2155 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 2156 Label L_skip_barrier; 2157 Register klass = r10; 2158 __ mov_metadata(klass, method->method_holder()); // InstanceKlass* 2159 __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/); 2160 2161 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path 2162 2163 __ bind(L_skip_barrier); 2164 } 2165 2166 #ifdef COMPILER1 2167 // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available. 2168 if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) { 2169 inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/); 2170 } 2171 #endif // COMPILER1 2172 2173 // The instruction at the verified entry point must be 5 bytes or longer 2174 // because it can be patched on the fly by make_non_entrant. The stack bang 2175 // instruction fits that requirement. 2176 2177 // Generate stack overflow check 2178 2179 if (UseStackBanging) { 2180 __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size()); 2181 } else { 2182 // need a 5 byte instruction to allow MT safe patching to non-entrant 2183 __ fat_nop(); 2184 } 2185 2186 // Generate a new frame for the wrapper. 2187 __ enter(); 2188 // -2 because return address is already present and so is saved rbp 2189 __ subptr(rsp, stack_size - 2*wordSize); 2190 2191 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 2192 bs->nmethod_entry_barrier(masm); 2193 2194 // Frame is now completed as far as size and linkage. 2195 int frame_complete = ((intptr_t)__ pc()) - start; 2196 2197 if (UseRTMLocking) { 2198 // Abort RTM transaction before calling JNI 2199 // because critical section will be large and will be 2200 // aborted anyway. Also nmethod could be deoptimized. 2201 __ xabort(0); 2202 } 2203 2204 #ifdef ASSERT 2205 { 2206 Label L; 2207 __ mov(rax, rsp); 2208 __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI) 2209 __ cmpptr(rax, rsp); 2210 __ jcc(Assembler::equal, L); 2211 __ stop("improperly aligned stack"); 2212 __ bind(L); 2213 } 2214 #endif /* ASSERT */ 2215 2216 2217 // We use r14 as the oop handle for the receiver/klass 2218 // It is callee save so it survives the call to native 2219 2220 const Register oop_handle_reg = r14; 2221 2222 if (is_critical_native && !Universe::heap()->supports_object_pinning()) { 2223 check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args, 2224 oop_handle_offset, oop_maps, in_regs, in_sig_bt); 2225 } 2226 2227 // 2228 // We immediately shuffle the arguments so that any vm call we have to 2229 // make from here on out (sync slow path, jvmti, etc.) we will have 2230 // captured the oops from our caller and have a valid oopMap for 2231 // them. 2232 2233 // ----------------- 2234 // The Grand Shuffle 2235 2236 // The Java calling convention is either equal (linux) or denser (win64) than the 2237 // c calling convention. However the because of the jni_env argument the c calling 2238 // convention always has at least one more (and two for static) arguments than Java. 2239 // Therefore if we move the args from java -> c backwards then we will never have 2240 // a register->register conflict and we don't have to build a dependency graph 2241 // and figure out how to break any cycles. 2242 // 2243 2244 // Record esp-based slot for receiver on stack for non-static methods 2245 int receiver_offset = -1; 2246 2247 // This is a trick. We double the stack slots so we can claim 2248 // the oops in the caller's frame. Since we are sure to have 2249 // more args than the caller doubling is enough to make 2250 // sure we can capture all the incoming oop args from the 2251 // caller. 2252 // 2253 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 2254 2255 // Mark location of rbp (someday) 2256 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp)); 2257 2258 // Use eax, ebx as temporaries during any memory-memory moves we have to do 2259 // All inbound args are referenced based on rbp and all outbound args via rsp. 2260 2261 2262 #ifdef ASSERT 2263 bool reg_destroyed[RegisterImpl::number_of_registers]; 2264 bool freg_destroyed[XMMRegisterImpl::number_of_registers]; 2265 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) { 2266 reg_destroyed[r] = false; 2267 } 2268 for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) { 2269 freg_destroyed[f] = false; 2270 } 2271 2272 #endif /* ASSERT */ 2273 2274 // This may iterate in two different directions depending on the 2275 // kind of native it is. The reason is that for regular JNI natives 2276 // the incoming and outgoing registers are offset upwards and for 2277 // critical natives they are offset down. 2278 GrowableArray<int> arg_order(2 * total_in_args); 2279 // Inbound arguments that need to be pinned for critical natives 2280 GrowableArray<int> pinned_args(total_in_args); 2281 // Current stack slot for storing register based array argument 2282 int pinned_slot = oop_handle_offset; 2283 2284 VMRegPair tmp_vmreg; 2285 tmp_vmreg.set2(rbx->as_VMReg()); 2286 2287 if (!is_critical_native) { 2288 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 2289 arg_order.push(i); 2290 arg_order.push(c_arg); 2291 } 2292 } else { 2293 // Compute a valid move order, using tmp_vmreg to break any cycles 2294 ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg); 2295 } 2296 2297 int temploc = -1; 2298 for (int ai = 0; ai < arg_order.length(); ai += 2) { 2299 int i = arg_order.at(ai); 2300 int c_arg = arg_order.at(ai + 1); 2301 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 2302 if (c_arg == -1) { 2303 assert(is_critical_native, "should only be required for critical natives"); 2304 // This arg needs to be moved to a temporary 2305 __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register()); 2306 in_regs[i] = tmp_vmreg; 2307 temploc = i; 2308 continue; 2309 } else if (i == -1) { 2310 assert(is_critical_native, "should only be required for critical natives"); 2311 // Read from the temporary location 2312 assert(temploc != -1, "must be valid"); 2313 i = temploc; 2314 temploc = -1; 2315 } 2316 #ifdef ASSERT 2317 if (in_regs[i].first()->is_Register()) { 2318 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 2319 } else if (in_regs[i].first()->is_XMMRegister()) { 2320 assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!"); 2321 } 2322 if (out_regs[c_arg].first()->is_Register()) { 2323 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 2324 } else if (out_regs[c_arg].first()->is_XMMRegister()) { 2325 freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true; 2326 } 2327 #endif /* ASSERT */ 2328 switch (in_sig_bt[i]) { 2329 case T_ARRAY: 2330 if (is_critical_native) { 2331 // pin before unpack 2332 if (Universe::heap()->supports_object_pinning()) { 2333 save_args(masm, total_c_args, 0, out_regs); 2334 gen_pin_object(masm, in_regs[i]); 2335 pinned_args.append(i); 2336 restore_args(masm, total_c_args, 0, out_regs); 2337 2338 // rax has pinned array 2339 VMRegPair result_reg; 2340 result_reg.set_ptr(rax->as_VMReg()); 2341 move_ptr(masm, result_reg, in_regs[i]); 2342 if (!in_regs[i].first()->is_stack()) { 2343 assert(pinned_slot <= stack_slots, "overflow"); 2344 move_ptr(masm, result_reg, VMRegImpl::stack2reg(pinned_slot)); 2345 pinned_slot += VMRegImpl::slots_per_word; 2346 } 2347 } 2348 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]); 2349 c_arg++; 2350 #ifdef ASSERT 2351 if (out_regs[c_arg].first()->is_Register()) { 2352 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 2353 } else if (out_regs[c_arg].first()->is_XMMRegister()) { 2354 freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true; 2355 } 2356 #endif 2357 break; 2358 } 2359 case T_OBJECT: 2360 assert(!is_critical_native, "no oop arguments"); 2361 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 2362 ((i == 0) && (!is_static)), 2363 &receiver_offset); 2364 break; 2365 case T_VOID: 2366 break; 2367 2368 case T_FLOAT: 2369 float_move(masm, in_regs[i], out_regs[c_arg]); 2370 break; 2371 2372 case T_DOUBLE: 2373 assert( i + 1 < total_in_args && 2374 in_sig_bt[i + 1] == T_VOID && 2375 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 2376 double_move(masm, in_regs[i], out_regs[c_arg]); 2377 break; 2378 2379 case T_LONG : 2380 long_move(masm, in_regs[i], out_regs[c_arg]); 2381 break; 2382 2383 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 2384 2385 default: 2386 move32_64(masm, in_regs[i], out_regs[c_arg]); 2387 } 2388 } 2389 2390 int c_arg; 2391 2392 // Pre-load a static method's oop into r14. Used both by locking code and 2393 // the normal JNI call code. 2394 if (!is_critical_native) { 2395 // point c_arg at the first arg that is already loaded in case we 2396 // need to spill before we call out 2397 c_arg = total_c_args - total_in_args; 2398 2399 if (method->is_static()) { 2400 2401 // load oop into a register 2402 __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror())); 2403 2404 // Now handlize the static class mirror it's known not-null. 2405 __ movptr(Address(rsp, klass_offset), oop_handle_reg); 2406 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 2407 2408 // Now get the handle 2409 __ lea(oop_handle_reg, Address(rsp, klass_offset)); 2410 // store the klass handle as second argument 2411 __ movptr(c_rarg1, oop_handle_reg); 2412 // and protect the arg if we must spill 2413 c_arg--; 2414 } 2415 } else { 2416 // For JNI critical methods we need to save all registers in save_args. 2417 c_arg = 0; 2418 } 2419 2420 // Change state to native (we save the return address in the thread, since it might not 2421 // be pushed on the stack when we do a a stack traversal). It is enough that the pc() 2422 // points into the right code segment. It does not have to be the correct return pc. 2423 // We use the same pc/oopMap repeatedly when we call out 2424 2425 intptr_t the_pc = (intptr_t) __ pc(); 2426 oop_maps->add_gc_map(the_pc - start, map); 2427 2428 __ set_last_Java_frame(rsp, noreg, (address)the_pc); 2429 2430 2431 // We have all of the arguments setup at this point. We must not touch any register 2432 // argument registers at this point (what if we save/restore them there are no oop? 2433 2434 { 2435 SkipIfEqual skip(masm, &DTraceMethodProbes, false); 2436 // protect the args we've loaded 2437 save_args(masm, total_c_args, c_arg, out_regs); 2438 __ mov_metadata(c_rarg1, method()); 2439 __ call_VM_leaf( 2440 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2441 r15_thread, c_rarg1); 2442 restore_args(masm, total_c_args, c_arg, out_regs); 2443 } 2444 2445 TSAN_RUNTIME_ONLY( 2446 // protect the args we've loaded 2447 save_args(masm, total_c_args, c_arg, out_regs); 2448 __ call_VM(noreg, 2449 CAST_FROM_FN_PTR(address, SharedRuntime::tsan_interp_method_entry), 2450 r15_thread); 2451 restore_args(masm, total_c_args, c_arg, out_regs); 2452 ); 2453 2454 // RedefineClasses() tracing support for obsolete method entry 2455 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2456 // protect the args we've loaded 2457 save_args(masm, total_c_args, c_arg, out_regs); 2458 __ mov_metadata(c_rarg1, method()); 2459 __ call_VM_leaf( 2460 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2461 r15_thread, c_rarg1); 2462 restore_args(masm, total_c_args, c_arg, out_regs); 2463 } 2464 2465 // Lock a synchronized method 2466 2467 // Register definitions used by locking and unlocking 2468 2469 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 2470 const Register obj_reg = rbx; // Will contain the oop 2471 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 2472 const Register old_hdr = r13; // value of old header at unlock time 2473 2474 Label slow_path_lock; 2475 Label lock_done; 2476 2477 if (method->is_synchronized()) { 2478 assert(!is_critical_native, "unhandled"); 2479 2480 2481 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 2482 2483 // Get the handle (the 2nd argument) 2484 __ mov(oop_handle_reg, c_rarg1); 2485 2486 // Get address of the box 2487 2488 __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2489 2490 // Load the oop from the handle 2491 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 2492 2493 __ resolve(IS_NOT_NULL, obj_reg); 2494 if (UseBiasedLocking) { 2495 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock); 2496 } 2497 2498 // Load immediate 1 into swap_reg %rax 2499 __ movl(swap_reg, 1); 2500 2501 // Load (object->mark() | 1) into swap_reg %rax 2502 __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2503 2504 // Save (object->mark() | 1) into BasicLock's displaced header 2505 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 2506 2507 // src -> dest iff dest == rax else rax <- dest 2508 __ lock(); 2509 __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2510 __ jcc(Assembler::equal, lock_done); 2511 2512 // Hmm should this move to the slow path code area??? 2513 2514 // Test if the oopMark is an obvious stack pointer, i.e., 2515 // 1) (mark & 3) == 0, and 2516 // 2) rsp <= mark < mark + os::pagesize() 2517 // These 3 tests can be done by evaluating the following 2518 // expression: ((mark - rsp) & (3 - os::vm_page_size())), 2519 // assuming both stack pointer and pagesize have their 2520 // least significant 2 bits clear. 2521 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg 2522 2523 __ subptr(swap_reg, rsp); 2524 __ andptr(swap_reg, 3 - os::vm_page_size()); 2525 2526 // Save the test result, for recursive case, the result is zero 2527 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 2528 __ jcc(Assembler::notEqual, slow_path_lock); 2529 2530 // Slow path will re-enter here 2531 2532 __ bind(lock_done); 2533 2534 TSAN_RUNTIME_ONLY( 2535 __ pusha(); 2536 __ call_VM(noreg, 2537 CAST_FROM_FN_PTR(address, SharedRuntime::tsan_oop_lock), 2538 obj_reg); 2539 __ popa(); 2540 ); 2541 } 2542 2543 2544 // Finally just about ready to make the JNI call 2545 2546 2547 // get JNIEnv* which is first argument to native 2548 if (!is_critical_native) { 2549 __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset()))); 2550 } 2551 2552 // Now set thread in native 2553 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native); 2554 2555 __ call(RuntimeAddress(native_func)); 2556 2557 // Verify or restore cpu control state after JNI call 2558 __ restore_cpu_control_state_after_jni(); 2559 2560 // Unpack native results. 2561 switch (ret_type) { 2562 case T_BOOLEAN: __ c2bool(rax); break; 2563 case T_CHAR : __ movzwl(rax, rax); break; 2564 case T_BYTE : __ sign_extend_byte (rax); break; 2565 case T_SHORT : __ sign_extend_short(rax); break; 2566 case T_INT : /* nothing to do */ break; 2567 case T_DOUBLE : 2568 case T_FLOAT : 2569 // Result is in xmm0 we'll save as needed 2570 break; 2571 case T_ARRAY: // Really a handle 2572 case T_OBJECT: // Really a handle 2573 break; // can't de-handlize until after safepoint check 2574 case T_VOID: break; 2575 case T_LONG: break; 2576 default : ShouldNotReachHere(); 2577 } 2578 2579 // unpin pinned arguments 2580 pinned_slot = oop_handle_offset; 2581 if (pinned_args.length() > 0) { 2582 // save return value that may be overwritten otherwise. 2583 save_native_result(masm, ret_type, stack_slots); 2584 for (int index = 0; index < pinned_args.length(); index ++) { 2585 int i = pinned_args.at(index); 2586 assert(pinned_slot <= stack_slots, "overflow"); 2587 if (!in_regs[i].first()->is_stack()) { 2588 int offset = pinned_slot * VMRegImpl::stack_slot_size; 2589 __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset)); 2590 pinned_slot += VMRegImpl::slots_per_word; 2591 } 2592 gen_unpin_object(masm, in_regs[i]); 2593 } 2594 restore_native_result(masm, ret_type, stack_slots); 2595 } 2596 2597 // Switch thread to "native transition" state before reading the synchronization state. 2598 // This additional state is necessary because reading and testing the synchronization 2599 // state is not atomic w.r.t. GC, as this scenario demonstrates: 2600 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 2601 // VM thread changes sync state to synchronizing and suspends threads for GC. 2602 // Thread A is resumed to finish this native method, but doesn't block here since it 2603 // didn't see any synchronization is progress, and escapes. 2604 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans); 2605 2606 // Force this write out before the read below 2607 __ membar(Assembler::Membar_mask_bits( 2608 Assembler::LoadLoad | Assembler::LoadStore | 2609 Assembler::StoreLoad | Assembler::StoreStore)); 2610 2611 Label after_transition; 2612 2613 // check for safepoint operation in progress and/or pending suspend requests 2614 { 2615 Label Continue; 2616 Label slow_path; 2617 2618 __ safepoint_poll(slow_path, r15_thread, rscratch1); 2619 2620 __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0); 2621 __ jcc(Assembler::equal, Continue); 2622 __ bind(slow_path); 2623 2624 // Don't use call_VM as it will see a possible pending exception and forward it 2625 // and never return here preventing us from clearing _last_native_pc down below. 2626 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are 2627 // preserved and correspond to the bcp/locals pointers. So we do a runtime call 2628 // by hand. 2629 // 2630 __ vzeroupper(); 2631 save_native_result(masm, ret_type, stack_slots); 2632 __ mov(c_rarg0, r15_thread); 2633 __ mov(r12, rsp); // remember sp 2634 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 2635 __ andptr(rsp, -16); // align stack as required by ABI 2636 if (!is_critical_native) { 2637 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2638 } else { 2639 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition))); 2640 } 2641 __ mov(rsp, r12); // restore sp 2642 __ reinit_heapbase(); 2643 // Restore any method result value 2644 restore_native_result(masm, ret_type, stack_slots); 2645 2646 if (is_critical_native) { 2647 // The call above performed the transition to thread_in_Java so 2648 // skip the transition logic below. 2649 __ jmpb(after_transition); 2650 } 2651 2652 __ bind(Continue); 2653 } 2654 2655 // change thread state 2656 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java); 2657 __ bind(after_transition); 2658 2659 Label reguard; 2660 Label reguard_done; 2661 __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled); 2662 __ jcc(Assembler::equal, reguard); 2663 __ bind(reguard_done); 2664 2665 // native result if any is live 2666 2667 // Unlock 2668 Label unlock_done; 2669 Label slow_path_unlock; 2670 if (method->is_synchronized()) { 2671 2672 // Get locked oop from the handle we passed to jni 2673 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 2674 __ resolve(IS_NOT_NULL, obj_reg); 2675 2676 TSAN_RUNTIME_ONLY( 2677 __ pusha(); 2678 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2679 SharedRuntime::tsan_oop_unlock), 2680 obj_reg); 2681 __ popa(); 2682 ); 2683 2684 Label done; 2685 2686 if (UseBiasedLocking) { 2687 __ biased_locking_exit(obj_reg, old_hdr, done); 2688 } 2689 2690 // Simple recursive lock? 2691 2692 __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD); 2693 __ jcc(Assembler::equal, done); 2694 2695 // Must save rax if if it is live now because cmpxchg must use it 2696 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2697 save_native_result(masm, ret_type, stack_slots); 2698 } 2699 2700 2701 // get address of the stack lock 2702 __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2703 // get old displaced header 2704 __ movptr(old_hdr, Address(rax, 0)); 2705 2706 // Atomic swap old header if oop still contains the stack lock 2707 __ lock(); 2708 __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2709 __ jcc(Assembler::notEqual, slow_path_unlock); 2710 2711 // slow path re-enters here 2712 __ bind(unlock_done); 2713 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2714 restore_native_result(masm, ret_type, stack_slots); 2715 } 2716 2717 __ bind(done); 2718 2719 } 2720 2721 TSAN_RUNTIME_ONLY( 2722 save_native_result(masm, ret_type, stack_slots); 2723 __ call_VM_leaf( 2724 CAST_FROM_FN_PTR(address, SharedRuntime::tsan_interp_method_exit)); 2725 restore_native_result(masm, ret_type, stack_slots); 2726 ); 2727 2728 { 2729 SkipIfEqual skip(masm, &DTraceMethodProbes, false); 2730 save_native_result(masm, ret_type, stack_slots); 2731 __ mov_metadata(c_rarg1, method()); 2732 __ call_VM_leaf( 2733 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2734 r15_thread, c_rarg1); 2735 restore_native_result(masm, ret_type, stack_slots); 2736 } 2737 2738 __ reset_last_Java_frame(false); 2739 2740 // Unbox oop result, e.g. JNIHandles::resolve value. 2741 if (is_reference_type(ret_type)) { 2742 __ resolve_jobject(rax /* value */, 2743 r15_thread /* thread */, 2744 rcx /* tmp */); 2745 } 2746 2747 if (CheckJNICalls) { 2748 // clear_pending_jni_exception_check 2749 __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD); 2750 } 2751 2752 if (!is_critical_native) { 2753 // reset handle block 2754 __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset())); 2755 __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD); 2756 } 2757 2758 // pop our frame 2759 2760 __ leave(); 2761 2762 if (!is_critical_native) { 2763 // Any exception pending? 2764 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); 2765 __ jcc(Assembler::notEqual, exception_pending); 2766 } 2767 2768 // Return 2769 2770 __ ret(0); 2771 2772 // Unexpected paths are out of line and go here 2773 2774 if (!is_critical_native) { 2775 // forward the exception 2776 __ bind(exception_pending); 2777 2778 // and forward the exception 2779 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2780 } 2781 2782 // Slow path locking & unlocking 2783 if (method->is_synchronized()) { 2784 2785 // BEGIN Slow path lock 2786 __ bind(slow_path_lock); 2787 2788 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2789 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2790 2791 // protect the args we've loaded 2792 save_args(masm, total_c_args, c_arg, out_regs); 2793 2794 __ mov(c_rarg0, obj_reg); 2795 __ mov(c_rarg1, lock_reg); 2796 __ mov(c_rarg2, r15_thread); 2797 2798 // Not a leaf but we have last_Java_frame setup as we want 2799 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2800 restore_args(masm, total_c_args, c_arg, out_regs); 2801 2802 #ifdef ASSERT 2803 { Label L; 2804 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); 2805 __ jcc(Assembler::equal, L); 2806 __ stop("no pending exception allowed on exit from monitorenter"); 2807 __ bind(L); 2808 } 2809 #endif 2810 __ jmp(lock_done); 2811 2812 // END Slow path lock 2813 2814 // BEGIN Slow path unlock 2815 __ bind(slow_path_unlock); 2816 2817 // If we haven't already saved the native result we must save it now as xmm registers 2818 // are still exposed. 2819 __ vzeroupper(); 2820 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2821 save_native_result(masm, ret_type, stack_slots); 2822 } 2823 2824 __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2825 2826 __ mov(c_rarg0, obj_reg); 2827 __ mov(c_rarg2, r15_thread); 2828 __ mov(r12, rsp); // remember sp 2829 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 2830 __ andptr(rsp, -16); // align stack as required by ABI 2831 2832 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2833 // NOTE that obj_reg == rbx currently 2834 __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset()))); 2835 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); 2836 2837 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2838 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C))); 2839 __ mov(rsp, r12); // restore sp 2840 __ reinit_heapbase(); 2841 #ifdef ASSERT 2842 { 2843 Label L; 2844 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD); 2845 __ jcc(Assembler::equal, L); 2846 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2847 __ bind(L); 2848 } 2849 #endif /* ASSERT */ 2850 2851 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx); 2852 2853 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2854 restore_native_result(masm, ret_type, stack_slots); 2855 } 2856 __ jmp(unlock_done); 2857 2858 // END Slow path unlock 2859 2860 } // synchronized 2861 2862 // SLOW PATH Reguard the stack if needed 2863 2864 __ bind(reguard); 2865 __ vzeroupper(); 2866 save_native_result(masm, ret_type, stack_slots); 2867 __ mov(r12, rsp); // remember sp 2868 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 2869 __ andptr(rsp, -16); // align stack as required by ABI 2870 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 2871 __ mov(rsp, r12); // restore sp 2872 __ reinit_heapbase(); 2873 restore_native_result(masm, ret_type, stack_slots); 2874 // and continue 2875 __ jmp(reguard_done); 2876 2877 2878 2879 __ flush(); 2880 2881 nmethod *nm = nmethod::new_native_nmethod(method, 2882 compile_id, 2883 masm->code(), 2884 vep_offset, 2885 frame_complete, 2886 stack_slots / VMRegImpl::slots_per_word, 2887 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2888 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2889 oop_maps); 2890 2891 if (is_critical_native) { 2892 nm->set_lazy_critical_native(true); 2893 } 2894 2895 return nm; 2896 2897 } 2898 2899 // this function returns the adjust size (in number of words) to a c2i adapter 2900 // activation for use during deoptimization 2901 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) { 2902 return (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2903 } 2904 2905 2906 uint SharedRuntime::out_preserve_stack_slots() { 2907 return 0; 2908 } 2909 2910 //------------------------------generate_deopt_blob---------------------------- 2911 void SharedRuntime::generate_deopt_blob() { 2912 // Allocate space for the code 2913 ResourceMark rm; 2914 // Setup code generation tools 2915 int pad = 0; 2916 #if INCLUDE_JVMCI 2917 if (EnableJVMCI || UseAOT) { 2918 pad += 512; // Increase the buffer size when compiling for JVMCI 2919 } 2920 #endif 2921 CodeBuffer buffer("deopt_blob", 2048+pad, 1024); 2922 MacroAssembler* masm = new MacroAssembler(&buffer); 2923 int frame_size_in_words; 2924 OopMap* map = NULL; 2925 OopMapSet *oop_maps = new OopMapSet(); 2926 2927 // ------------- 2928 // This code enters when returning to a de-optimized nmethod. A return 2929 // address has been pushed on the the stack, and return values are in 2930 // registers. 2931 // If we are doing a normal deopt then we were called from the patched 2932 // nmethod from the point we returned to the nmethod. So the return 2933 // address on the stack is wrong by NativeCall::instruction_size 2934 // We will adjust the value so it looks like we have the original return 2935 // address on the stack (like when we eagerly deoptimized). 2936 // In the case of an exception pending when deoptimizing, we enter 2937 // with a return address on the stack that points after the call we patched 2938 // into the exception handler. We have the following register state from, 2939 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2940 // rax: exception oop 2941 // rbx: exception handler 2942 // rdx: throwing pc 2943 // So in this case we simply jam rdx into the useless return address and 2944 // the stack looks just like we want. 2945 // 2946 // At this point we need to de-opt. We save the argument return 2947 // registers. We call the first C routine, fetch_unroll_info(). This 2948 // routine captures the return values and returns a structure which 2949 // describes the current frame size and the sizes of all replacement frames. 2950 // The current frame is compiled code and may contain many inlined 2951 // functions, each with their own JVM state. We pop the current frame, then 2952 // push all the new frames. Then we call the C routine unpack_frames() to 2953 // populate these frames. Finally unpack_frames() returns us the new target 2954 // address. Notice that callee-save registers are BLOWN here; they have 2955 // already been captured in the vframeArray at the time the return PC was 2956 // patched. 2957 address start = __ pc(); 2958 Label cont; 2959 2960 // Prolog for non exception case! 2961 2962 // Save everything in sight. 2963 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 2964 2965 // Normal deoptimization. Save exec mode for unpack_frames. 2966 __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved 2967 __ jmp(cont); 2968 2969 int reexecute_offset = __ pc() - start; 2970 #if INCLUDE_JVMCI && !defined(COMPILER1) 2971 if (EnableJVMCI && UseJVMCICompiler) { 2972 // JVMCI does not use this kind of deoptimization 2973 __ should_not_reach_here(); 2974 } 2975 #endif 2976 2977 // Reexecute case 2978 // return address is the pc describes what bci to do re-execute at 2979 2980 // No need to update map as each call to save_live_registers will produce identical oopmap 2981 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 2982 2983 __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved 2984 __ jmp(cont); 2985 2986 #if INCLUDE_JVMCI 2987 Label after_fetch_unroll_info_call; 2988 int implicit_exception_uncommon_trap_offset = 0; 2989 int uncommon_trap_offset = 0; 2990 2991 if (EnableJVMCI || UseAOT) { 2992 implicit_exception_uncommon_trap_offset = __ pc() - start; 2993 2994 __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2995 __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD); 2996 2997 uncommon_trap_offset = __ pc() - start; 2998 2999 // Save everything in sight. 3000 RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 3001 // fetch_unroll_info needs to call last_java_frame() 3002 __ set_last_Java_frame(noreg, noreg, NULL); 3003 3004 __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset()))); 3005 __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1); 3006 3007 __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute); 3008 __ mov(c_rarg0, r15_thread); 3009 __ movl(c_rarg2, r14); // exec mode 3010 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); 3011 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 3012 3013 __ reset_last_Java_frame(false); 3014 3015 __ jmp(after_fetch_unroll_info_call); 3016 } // EnableJVMCI 3017 #endif // INCLUDE_JVMCI 3018 3019 int exception_offset = __ pc() - start; 3020 3021 // Prolog for exception case 3022 3023 // all registers are dead at this entry point, except for rax, and 3024 // rdx which contain the exception oop and exception pc 3025 // respectively. Set them in TLS and fall thru to the 3026 // unpack_with_exception_in_tls entry point. 3027 3028 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx); 3029 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax); 3030 3031 int exception_in_tls_offset = __ pc() - start; 3032 3033 // new implementation because exception oop is now passed in JavaThread 3034 3035 // Prolog for exception case 3036 // All registers must be preserved because they might be used by LinearScan 3037 // Exceptiop oop and throwing PC are passed in JavaThread 3038 // tos: stack at point of call to method that threw the exception (i.e. only 3039 // args are on the stack, no return address) 3040 3041 // make room on stack for the return address 3042 // It will be patched later with the throwing pc. The correct value is not 3043 // available now because loading it from memory would destroy registers. 3044 __ push(0); 3045 3046 // Save everything in sight. 3047 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 3048 3049 // Now it is safe to overwrite any register 3050 3051 // Deopt during an exception. Save exec mode for unpack_frames. 3052 __ movl(r14, Deoptimization::Unpack_exception); // callee-saved 3053 3054 // load throwing pc from JavaThread and patch it as the return address 3055 // of the current frame. Then clear the field in JavaThread 3056 3057 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); 3058 __ movptr(Address(rbp, wordSize), rdx); 3059 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); 3060 3061 #ifdef ASSERT 3062 // verify that there is really an exception oop in JavaThread 3063 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 3064 __ verify_oop(rax); 3065 3066 // verify that there is no pending exception 3067 Label no_pending_exception; 3068 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 3069 __ testptr(rax, rax); 3070 __ jcc(Assembler::zero, no_pending_exception); 3071 __ stop("must not have pending exception here"); 3072 __ bind(no_pending_exception); 3073 #endif 3074 3075 __ bind(cont); 3076 3077 // Call C code. Need thread and this frame, but NOT official VM entry 3078 // crud. We cannot block on this call, no GC can happen. 3079 // 3080 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 3081 3082 // fetch_unroll_info needs to call last_java_frame(). 3083 3084 __ set_last_Java_frame(noreg, noreg, NULL); 3085 #ifdef ASSERT 3086 { Label L; 3087 __ cmpptr(Address(r15_thread, 3088 JavaThread::last_Java_fp_offset()), 3089 (int32_t)0); 3090 __ jcc(Assembler::equal, L); 3091 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 3092 __ bind(L); 3093 } 3094 #endif // ASSERT 3095 __ mov(c_rarg0, r15_thread); 3096 __ movl(c_rarg1, r14); // exec_mode 3097 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 3098 3099 // Need to have an oopmap that tells fetch_unroll_info where to 3100 // find any register it might need. 3101 oop_maps->add_gc_map(__ pc() - start, map); 3102 3103 __ reset_last_Java_frame(false); 3104 3105 #if INCLUDE_JVMCI 3106 if (EnableJVMCI || UseAOT) { 3107 __ bind(after_fetch_unroll_info_call); 3108 } 3109 #endif 3110 3111 // Load UnrollBlock* into rdi 3112 __ mov(rdi, rax); 3113 3114 __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes())); 3115 Label noException; 3116 __ cmpl(r14, Deoptimization::Unpack_exception); // Was exception pending? 3117 __ jcc(Assembler::notEqual, noException); 3118 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 3119 // QQQ this is useless it was NULL above 3120 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); 3121 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD); 3122 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); 3123 3124 __ verify_oop(rax); 3125 3126 // Overwrite the result registers with the exception results. 3127 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); 3128 // I think this is useless 3129 __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx); 3130 3131 __ bind(noException); 3132 3133 // Only register save data is on the stack. 3134 // Now restore the result registers. Everything else is either dead 3135 // or captured in the vframeArray. 3136 RegisterSaver::restore_result_registers(masm); 3137 3138 // All of the register save area has been popped of the stack. Only the 3139 // return address remains. 3140 3141 // Pop all the frames we must move/replace. 3142 // 3143 // Frame picture (youngest to oldest) 3144 // 1: self-frame (no frame link) 3145 // 2: deopting frame (no frame link) 3146 // 3: caller of deopting frame (could be compiled/interpreted). 3147 // 3148 // Note: by leaving the return address of self-frame on the stack 3149 // and using the size of frame 2 to adjust the stack 3150 // when we are done the return to frame 3 will still be on the stack. 3151 3152 // Pop deoptimized frame 3153 __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 3154 __ addptr(rsp, rcx); 3155 3156 // rsp should be pointing at the return address to the caller (3) 3157 3158 // Pick up the initial fp we should save 3159 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 3160 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); 3161 3162 #ifdef ASSERT 3163 // Compilers generate code that bang the stack by as much as the 3164 // interpreter would need. So this stack banging should never 3165 // trigger a fault. Verify that it does not on non product builds. 3166 if (UseStackBanging) { 3167 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 3168 __ bang_stack_size(rbx, rcx); 3169 } 3170 #endif 3171 3172 // Load address of array of frame pcs into rcx 3173 __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 3174 3175 // Trash the old pc 3176 __ addptr(rsp, wordSize); 3177 3178 // Load address of array of frame sizes into rsi 3179 __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 3180 3181 // Load counter into rdx 3182 __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 3183 3184 // Now adjust the caller's stack to make up for the extra locals 3185 // but record the original sp so that we can save it in the skeletal interpreter 3186 // frame and the stack walking of interpreter_sender will get the unextended sp 3187 // value and not the "real" sp value. 3188 3189 const Register sender_sp = r8; 3190 3191 __ mov(sender_sp, rsp); 3192 __ movl(rbx, Address(rdi, 3193 Deoptimization::UnrollBlock:: 3194 caller_adjustment_offset_in_bytes())); 3195 __ subptr(rsp, rbx); 3196 3197 // Push interpreter frames in a loop 3198 Label loop; 3199 __ bind(loop); 3200 __ movptr(rbx, Address(rsi, 0)); // Load frame size 3201 __ subptr(rbx, 2*wordSize); // We'll push pc and ebp by hand 3202 __ pushptr(Address(rcx, 0)); // Save return address 3203 __ enter(); // Save old & set new ebp 3204 __ subptr(rsp, rbx); // Prolog 3205 // This value is corrected by layout_activation_impl 3206 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD ); 3207 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable 3208 __ mov(sender_sp, rsp); // Pass sender_sp to next frame 3209 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 3210 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 3211 __ decrementl(rdx); // Decrement counter 3212 __ jcc(Assembler::notZero, loop); 3213 __ pushptr(Address(rcx, 0)); // Save final return address 3214 3215 // Re-push self-frame 3216 __ enter(); // Save old & set new ebp 3217 3218 // Allocate a full sized register save area. 3219 // Return address and rbp are in place, so we allocate two less words. 3220 __ subptr(rsp, (frame_size_in_words - 2) * wordSize); 3221 3222 // Restore frame locals after moving the frame 3223 __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0); 3224 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); 3225 3226 // Call C code. Need thread but NOT official VM entry 3227 // crud. We cannot block on this call, no GC can happen. Call should 3228 // restore return values to their stack-slots with the new SP. 3229 // 3230 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 3231 3232 // Use rbp because the frames look interpreted now 3233 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 3234 // Don't need the precise return PC here, just precise enough to point into this code blob. 3235 address the_pc = __ pc(); 3236 __ set_last_Java_frame(noreg, rbp, the_pc); 3237 3238 __ andptr(rsp, -(StackAlignmentInBytes)); // Fix stack alignment as required by ABI 3239 __ mov(c_rarg0, r15_thread); 3240 __ movl(c_rarg1, r14); // second arg: exec_mode 3241 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 3242 // Revert SP alignment after call since we're going to do some SP relative addressing below 3243 __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset())); 3244 3245 // Set an oopmap for the call site 3246 // Use the same PC we used for the last java frame 3247 oop_maps->add_gc_map(the_pc - start, 3248 new OopMap( frame_size_in_words, 0 )); 3249 3250 // Clear fp AND pc 3251 __ reset_last_Java_frame(true); 3252 3253 // Collect return values 3254 __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes())); 3255 __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes())); 3256 // I think this is useless (throwing pc?) 3257 __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes())); 3258 3259 // Pop self-frame. 3260 __ leave(); // Epilog 3261 3262 // Jump to interpreter 3263 __ ret(0); 3264 3265 // Make sure all code is generated 3266 masm->flush(); 3267 3268 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 3269 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 3270 #if INCLUDE_JVMCI 3271 if (EnableJVMCI || UseAOT) { 3272 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 3273 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 3274 } 3275 #endif 3276 } 3277 3278 #ifdef COMPILER2 3279 //------------------------------generate_uncommon_trap_blob-------------------- 3280 void SharedRuntime::generate_uncommon_trap_blob() { 3281 // Allocate space for the code 3282 ResourceMark rm; 3283 // Setup code generation tools 3284 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 3285 MacroAssembler* masm = new MacroAssembler(&buffer); 3286 3287 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 3288 3289 address start = __ pc(); 3290 3291 if (UseRTMLocking) { 3292 // Abort RTM transaction before possible nmethod deoptimization. 3293 __ xabort(0); 3294 } 3295 3296 // Push self-frame. We get here with a return address on the 3297 // stack, so rsp is 8-byte aligned until we allocate our frame. 3298 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog! 3299 3300 // No callee saved registers. rbp is assumed implicitly saved 3301 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp); 3302 3303 // compiler left unloaded_class_index in j_rarg0 move to where the 3304 // runtime expects it. 3305 __ movl(c_rarg1, j_rarg0); 3306 3307 __ set_last_Java_frame(noreg, noreg, NULL); 3308 3309 // Call C code. Need thread but NOT official VM entry 3310 // crud. We cannot block on this call, no GC can happen. Call should 3311 // capture callee-saved registers as well as return values. 3312 // Thread is in rdi already. 3313 // 3314 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index); 3315 3316 __ mov(c_rarg0, r15_thread); 3317 __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap); 3318 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); 3319 3320 // Set an oopmap for the call site 3321 OopMapSet* oop_maps = new OopMapSet(); 3322 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); 3323 3324 // location of rbp is known implicitly by the frame sender code 3325 3326 oop_maps->add_gc_map(__ pc() - start, map); 3327 3328 __ reset_last_Java_frame(false); 3329 3330 // Load UnrollBlock* into rdi 3331 __ mov(rdi, rax); 3332 3333 #ifdef ASSERT 3334 { Label L; 3335 __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()), 3336 (int32_t)Deoptimization::Unpack_uncommon_trap); 3337 __ jcc(Assembler::equal, L); 3338 __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap"); 3339 __ bind(L); 3340 } 3341 #endif 3342 3343 // Pop all the frames we must move/replace. 3344 // 3345 // Frame picture (youngest to oldest) 3346 // 1: self-frame (no frame link) 3347 // 2: deopting frame (no frame link) 3348 // 3: caller of deopting frame (could be compiled/interpreted). 3349 3350 // Pop self-frame. We have no frame, and must rely only on rax and rsp. 3351 __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog! 3352 3353 // Pop deoptimized frame (int) 3354 __ movl(rcx, Address(rdi, 3355 Deoptimization::UnrollBlock:: 3356 size_of_deoptimized_frame_offset_in_bytes())); 3357 __ addptr(rsp, rcx); 3358 3359 // rsp should be pointing at the return address to the caller (3) 3360 3361 // Pick up the initial fp we should save 3362 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 3363 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); 3364 3365 #ifdef ASSERT 3366 // Compilers generate code that bang the stack by as much as the 3367 // interpreter would need. So this stack banging should never 3368 // trigger a fault. Verify that it does not on non product builds. 3369 if (UseStackBanging) { 3370 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 3371 __ bang_stack_size(rbx, rcx); 3372 } 3373 #endif 3374 3375 // Load address of array of frame pcs into rcx (address*) 3376 __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 3377 3378 // Trash the return pc 3379 __ addptr(rsp, wordSize); 3380 3381 // Load address of array of frame sizes into rsi (intptr_t*) 3382 __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes())); 3383 3384 // Counter 3385 __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int) 3386 3387 // Now adjust the caller's stack to make up for the extra locals but 3388 // record the original sp so that we can save it in the skeletal 3389 // interpreter frame and the stack walking of interpreter_sender 3390 // will get the unextended sp value and not the "real" sp value. 3391 3392 const Register sender_sp = r8; 3393 3394 __ mov(sender_sp, rsp); 3395 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int) 3396 __ subptr(rsp, rbx); 3397 3398 // Push interpreter frames in a loop 3399 Label loop; 3400 __ bind(loop); 3401 __ movptr(rbx, Address(rsi, 0)); // Load frame size 3402 __ subptr(rbx, 2 * wordSize); // We'll push pc and rbp by hand 3403 __ pushptr(Address(rcx, 0)); // Save return address 3404 __ enter(); // Save old & set new rbp 3405 __ subptr(rsp, rbx); // Prolog 3406 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), 3407 sender_sp); // Make it walkable 3408 // This value is corrected by layout_activation_impl 3409 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD ); 3410 __ mov(sender_sp, rsp); // Pass sender_sp to next frame 3411 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 3412 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 3413 __ decrementl(rdx); // Decrement counter 3414 __ jcc(Assembler::notZero, loop); 3415 __ pushptr(Address(rcx, 0)); // Save final return address 3416 3417 // Re-push self-frame 3418 __ enter(); // Save old & set new rbp 3419 __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt); 3420 // Prolog 3421 3422 // Use rbp because the frames look interpreted now 3423 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 3424 // Don't need the precise return PC here, just precise enough to point into this code blob. 3425 address the_pc = __ pc(); 3426 __ set_last_Java_frame(noreg, rbp, the_pc); 3427 3428 // Call C code. Need thread but NOT official VM entry 3429 // crud. We cannot block on this call, no GC can happen. Call should 3430 // restore return values to their stack-slots with the new SP. 3431 // Thread is in rdi already. 3432 // 3433 // BasicType unpack_frames(JavaThread* thread, int exec_mode); 3434 3435 __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI 3436 __ mov(c_rarg0, r15_thread); 3437 __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap); 3438 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 3439 3440 // Set an oopmap for the call site 3441 // Use the same PC we used for the last java frame 3442 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 3443 3444 // Clear fp AND pc 3445 __ reset_last_Java_frame(true); 3446 3447 // Pop self-frame. 3448 __ leave(); // Epilog 3449 3450 // Jump to interpreter 3451 __ ret(0); 3452 3453 // Make sure all code is generated 3454 masm->flush(); 3455 3456 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, 3457 SimpleRuntimeFrame::framesize >> 1); 3458 } 3459 #endif // COMPILER2 3460 3461 3462 //------------------------------generate_handler_blob------ 3463 // 3464 // Generate a special Compile2Runtime blob that saves all registers, 3465 // and setup oopmap. 3466 // 3467 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 3468 assert(StubRoutines::forward_exception_entry() != NULL, 3469 "must be generated before"); 3470 3471 ResourceMark rm; 3472 OopMapSet *oop_maps = new OopMapSet(); 3473 OopMap* map; 3474 3475 // Allocate space for the code. Setup code generation tools. 3476 CodeBuffer buffer("handler_blob", 2048, 1024); 3477 MacroAssembler* masm = new MacroAssembler(&buffer); 3478 3479 address start = __ pc(); 3480 address call_pc = NULL; 3481 int frame_size_in_words; 3482 bool cause_return = (poll_type == POLL_AT_RETURN); 3483 bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP); 3484 3485 if (UseRTMLocking) { 3486 // Abort RTM transaction before calling runtime 3487 // because critical section will be large and will be 3488 // aborted anyway. Also nmethod could be deoptimized. 3489 __ xabort(0); 3490 } 3491 3492 // Make room for return address (or push it again) 3493 if (!cause_return) { 3494 __ push(rbx); 3495 } 3496 3497 // Save registers, fpu state, and flags 3498 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors); 3499 3500 // The following is basically a call_VM. However, we need the precise 3501 // address of the call in order to generate an oopmap. Hence, we do all the 3502 // work outselves. 3503 3504 __ set_last_Java_frame(noreg, noreg, NULL); 3505 3506 // The return address must always be correct so that frame constructor never 3507 // sees an invalid pc. 3508 3509 if (!cause_return) { 3510 // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack. 3511 // Additionally, rbx is a callee saved register and we can look at it later to determine 3512 // if someone changed the return address for us! 3513 __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset())); 3514 __ movptr(Address(rbp, wordSize), rbx); 3515 } 3516 3517 // Do the call 3518 __ mov(c_rarg0, r15_thread); 3519 __ call(RuntimeAddress(call_ptr)); 3520 3521 // Set an oopmap for the call site. This oopmap will map all 3522 // oop-registers and debug-info registers as callee-saved. This 3523 // will allow deoptimization at this safepoint to find all possible 3524 // debug-info recordings, as well as let GC find all oops. 3525 3526 oop_maps->add_gc_map( __ pc() - start, map); 3527 3528 Label noException; 3529 3530 __ reset_last_Java_frame(false); 3531 3532 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 3533 __ jcc(Assembler::equal, noException); 3534 3535 // Exception pending 3536 3537 RegisterSaver::restore_live_registers(masm, save_vectors); 3538 3539 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3540 3541 // No exception case 3542 __ bind(noException); 3543 3544 Label no_adjust; 3545 #ifdef ASSERT 3546 Label bail; 3547 #endif 3548 if (SafepointMechanism::uses_thread_local_poll() && !cause_return) { 3549 Label no_prefix, not_special; 3550 3551 // If our stashed return pc was modified by the runtime we avoid touching it 3552 __ cmpptr(rbx, Address(rbp, wordSize)); 3553 __ jccb(Assembler::notEqual, no_adjust); 3554 3555 // Skip over the poll instruction. 3556 // See NativeInstruction::is_safepoint_poll() 3557 // Possible encodings: 3558 // 85 00 test %eax,(%rax) 3559 // 85 01 test %eax,(%rcx) 3560 // 85 02 test %eax,(%rdx) 3561 // 85 03 test %eax,(%rbx) 3562 // 85 06 test %eax,(%rsi) 3563 // 85 07 test %eax,(%rdi) 3564 // 3565 // 41 85 00 test %eax,(%r8) 3566 // 41 85 01 test %eax,(%r9) 3567 // 41 85 02 test %eax,(%r10) 3568 // 41 85 03 test %eax,(%r11) 3569 // 41 85 06 test %eax,(%r14) 3570 // 41 85 07 test %eax,(%r15) 3571 // 3572 // 85 04 24 test %eax,(%rsp) 3573 // 41 85 04 24 test %eax,(%r12) 3574 // 85 45 00 test %eax,0x0(%rbp) 3575 // 41 85 45 00 test %eax,0x0(%r13) 3576 3577 __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix); 3578 __ jcc(Assembler::notEqual, no_prefix); 3579 __ addptr(rbx, 1); 3580 __ bind(no_prefix); 3581 #ifdef ASSERT 3582 __ movptr(rax, rbx); // remember where 0x85 should be, for verification below 3583 #endif 3584 // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values: 3585 // r12/rsp 0x04 3586 // r13/rbp 0x05 3587 __ movzbq(rcx, Address(rbx, 1)); 3588 __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05 3589 __ subptr(rcx, 4); // looking for 0x00 .. 0x01 3590 __ cmpptr(rcx, 1); 3591 __ jcc(Assembler::above, not_special); 3592 __ addptr(rbx, 1); 3593 __ bind(not_special); 3594 #ifdef ASSERT 3595 // Verify the correct encoding of the poll we're about to skip. 3596 __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl); 3597 __ jcc(Assembler::notEqual, bail); 3598 // Mask out the modrm bits 3599 __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask); 3600 // rax encodes to 0, so if the bits are nonzero it's incorrect 3601 __ jcc(Assembler::notZero, bail); 3602 #endif 3603 // Adjust return pc forward to step over the safepoint poll instruction 3604 __ addptr(rbx, 2); 3605 __ movptr(Address(rbp, wordSize), rbx); 3606 } 3607 3608 __ bind(no_adjust); 3609 // Normal exit, restore registers and exit. 3610 RegisterSaver::restore_live_registers(masm, save_vectors); 3611 __ ret(0); 3612 3613 #ifdef ASSERT 3614 __ bind(bail); 3615 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 3616 #endif 3617 3618 // Make sure all code is generated 3619 masm->flush(); 3620 3621 // Fill-out other meta info 3622 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 3623 } 3624 3625 // 3626 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 3627 // 3628 // Generate a stub that calls into vm to find out the proper destination 3629 // of a java call. All the argument registers are live at this point 3630 // but since this is generic code we don't know what they are and the caller 3631 // must do any gc of the args. 3632 // 3633 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 3634 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 3635 3636 // allocate space for the code 3637 ResourceMark rm; 3638 3639 CodeBuffer buffer(name, 1000, 512); 3640 MacroAssembler* masm = new MacroAssembler(&buffer); 3641 3642 int frame_size_in_words; 3643 3644 OopMapSet *oop_maps = new OopMapSet(); 3645 OopMap* map = NULL; 3646 3647 int start = __ offset(); 3648 3649 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 3650 3651 int frame_complete = __ offset(); 3652 3653 __ set_last_Java_frame(noreg, noreg, NULL); 3654 3655 __ mov(c_rarg0, r15_thread); 3656 3657 __ call(RuntimeAddress(destination)); 3658 3659 3660 // Set an oopmap for the call site. 3661 // We need this not only for callee-saved registers, but also for volatile 3662 // registers that the compiler might be keeping live across a safepoint. 3663 3664 oop_maps->add_gc_map( __ offset() - start, map); 3665 3666 // rax contains the address we are going to jump to assuming no exception got installed 3667 3668 // clear last_Java_sp 3669 __ reset_last_Java_frame(false); 3670 // check for pending exceptions 3671 Label pending; 3672 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 3673 __ jcc(Assembler::notEqual, pending); 3674 3675 // get the returned Method* 3676 __ get_vm_result_2(rbx, r15_thread); 3677 __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx); 3678 3679 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); 3680 3681 RegisterSaver::restore_live_registers(masm); 3682 3683 // We are back the the original state on entry and ready to go. 3684 3685 __ jmp(rax); 3686 3687 // Pending exception after the safepoint 3688 3689 __ bind(pending); 3690 3691 RegisterSaver::restore_live_registers(masm); 3692 3693 // exception pending => remove activation and forward to exception handler 3694 3695 __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD); 3696 3697 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 3698 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3699 3700 // ------------- 3701 // make sure all code is generated 3702 masm->flush(); 3703 3704 // return the blob 3705 // frame_size_words or bytes?? 3706 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 3707 } 3708 3709 3710 //------------------------------Montgomery multiplication------------------------ 3711 // 3712 3713 #ifndef _WINDOWS 3714 3715 #define ASM_SUBTRACT 3716 3717 #ifdef ASM_SUBTRACT 3718 // Subtract 0:b from carry:a. Return carry. 3719 static unsigned long 3720 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) { 3721 long i = 0, cnt = len; 3722 unsigned long tmp; 3723 asm volatile("clc; " 3724 "0: ; " 3725 "mov (%[b], %[i], 8), %[tmp]; " 3726 "sbb %[tmp], (%[a], %[i], 8); " 3727 "inc %[i]; dec %[cnt]; " 3728 "jne 0b; " 3729 "mov %[carry], %[tmp]; sbb $0, %[tmp]; " 3730 : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp) 3731 : [a]"r"(a), [b]"r"(b), [carry]"r"(carry) 3732 : "memory"); 3733 return tmp; 3734 } 3735 #else // ASM_SUBTRACT 3736 typedef int __attribute__((mode(TI))) int128; 3737 3738 // Subtract 0:b from carry:a. Return carry. 3739 static unsigned long 3740 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) { 3741 int128 tmp = 0; 3742 int i; 3743 for (i = 0; i < len; i++) { 3744 tmp += a[i]; 3745 tmp -= b[i]; 3746 a[i] = tmp; 3747 tmp >>= 64; 3748 assert(-1 <= tmp && tmp <= 0, "invariant"); 3749 } 3750 return tmp + carry; 3751 } 3752 #endif // ! ASM_SUBTRACT 3753 3754 // Multiply (unsigned) Long A by Long B, accumulating the double- 3755 // length result into the accumulator formed of T0, T1, and T2. 3756 #define MACC(A, B, T0, T1, T2) \ 3757 do { \ 3758 unsigned long hi, lo; \ 3759 __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4" \ 3760 : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \ 3761 : "r"(A), "a"(B) : "cc"); \ 3762 } while(0) 3763 3764 // As above, but add twice the double-length result into the 3765 // accumulator. 3766 #define MACC2(A, B, T0, T1, T2) \ 3767 do { \ 3768 unsigned long hi, lo; \ 3769 __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \ 3770 "add %%rax, %2; adc %%rdx, %3; adc $0, %4" \ 3771 : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \ 3772 : "r"(A), "a"(B) : "cc"); \ 3773 } while(0) 3774 3775 // Fast Montgomery multiplication. The derivation of the algorithm is 3776 // in A Cryptographic Library for the Motorola DSP56000, 3777 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237. 3778 3779 static void __attribute__((noinline)) 3780 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[], 3781 unsigned long m[], unsigned long inv, int len) { 3782 unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator 3783 int i; 3784 3785 assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply"); 3786 3787 for (i = 0; i < len; i++) { 3788 int j; 3789 for (j = 0; j < i; j++) { 3790 MACC(a[j], b[i-j], t0, t1, t2); 3791 MACC(m[j], n[i-j], t0, t1, t2); 3792 } 3793 MACC(a[i], b[0], t0, t1, t2); 3794 m[i] = t0 * inv; 3795 MACC(m[i], n[0], t0, t1, t2); 3796 3797 assert(t0 == 0, "broken Montgomery multiply"); 3798 3799 t0 = t1; t1 = t2; t2 = 0; 3800 } 3801 3802 for (i = len; i < 2*len; i++) { 3803 int j; 3804 for (j = i-len+1; j < len; j++) { 3805 MACC(a[j], b[i-j], t0, t1, t2); 3806 MACC(m[j], n[i-j], t0, t1, t2); 3807 } 3808 m[i-len] = t0; 3809 t0 = t1; t1 = t2; t2 = 0; 3810 } 3811 3812 while (t0) 3813 t0 = sub(m, n, t0, len); 3814 } 3815 3816 // Fast Montgomery squaring. This uses asymptotically 25% fewer 3817 // multiplies so it should be up to 25% faster than Montgomery 3818 // multiplication. However, its loop control is more complex and it 3819 // may actually run slower on some machines. 3820 3821 static void __attribute__((noinline)) 3822 montgomery_square(unsigned long a[], unsigned long n[], 3823 unsigned long m[], unsigned long inv, int len) { 3824 unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator 3825 int i; 3826 3827 assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply"); 3828 3829 for (i = 0; i < len; i++) { 3830 int j; 3831 int end = (i+1)/2; 3832 for (j = 0; j < end; j++) { 3833 MACC2(a[j], a[i-j], t0, t1, t2); 3834 MACC(m[j], n[i-j], t0, t1, t2); 3835 } 3836 if ((i & 1) == 0) { 3837 MACC(a[j], a[j], t0, t1, t2); 3838 } 3839 for (; j < i; j++) { 3840 MACC(m[j], n[i-j], t0, t1, t2); 3841 } 3842 m[i] = t0 * inv; 3843 MACC(m[i], n[0], t0, t1, t2); 3844 3845 assert(t0 == 0, "broken Montgomery square"); 3846 3847 t0 = t1; t1 = t2; t2 = 0; 3848 } 3849 3850 for (i = len; i < 2*len; i++) { 3851 int start = i-len+1; 3852 int end = start + (len - start)/2; 3853 int j; 3854 for (j = start; j < end; j++) { 3855 MACC2(a[j], a[i-j], t0, t1, t2); 3856 MACC(m[j], n[i-j], t0, t1, t2); 3857 } 3858 if ((i & 1) == 0) { 3859 MACC(a[j], a[j], t0, t1, t2); 3860 } 3861 for (; j < len; j++) { 3862 MACC(m[j], n[i-j], t0, t1, t2); 3863 } 3864 m[i-len] = t0; 3865 t0 = t1; t1 = t2; t2 = 0; 3866 } 3867 3868 while (t0) 3869 t0 = sub(m, n, t0, len); 3870 } 3871 3872 // Swap words in a longword. 3873 static unsigned long swap(unsigned long x) { 3874 return (x << 32) | (x >> 32); 3875 } 3876 3877 // Copy len longwords from s to d, word-swapping as we go. The 3878 // destination array is reversed. 3879 static void reverse_words(unsigned long *s, unsigned long *d, int len) { 3880 d += len; 3881 while(len-- > 0) { 3882 d--; 3883 *d = swap(*s); 3884 s++; 3885 } 3886 } 3887 3888 // The threshold at which squaring is advantageous was determined 3889 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz. 3890 #define MONTGOMERY_SQUARING_THRESHOLD 64 3891 3892 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints, 3893 jint len, jlong inv, 3894 jint *m_ints) { 3895 assert(len % 2 == 0, "array length in montgomery_multiply must be even"); 3896 int longwords = len/2; 3897 3898 // Make very sure we don't use so much space that the stack might 3899 // overflow. 512 jints corresponds to an 16384-bit integer and 3900 // will use here a total of 8k bytes of stack space. 3901 int total_allocation = longwords * sizeof (unsigned long) * 4; 3902 guarantee(total_allocation <= 8192, "must be"); 3903 unsigned long *scratch = (unsigned long *)alloca(total_allocation); 3904 3905 // Local scratch arrays 3906 unsigned long 3907 *a = scratch + 0 * longwords, 3908 *b = scratch + 1 * longwords, 3909 *n = scratch + 2 * longwords, 3910 *m = scratch + 3 * longwords; 3911 3912 reverse_words((unsigned long *)a_ints, a, longwords); 3913 reverse_words((unsigned long *)b_ints, b, longwords); 3914 reverse_words((unsigned long *)n_ints, n, longwords); 3915 3916 ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords); 3917 3918 reverse_words(m, (unsigned long *)m_ints, longwords); 3919 } 3920 3921 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints, 3922 jint len, jlong inv, 3923 jint *m_ints) { 3924 assert(len % 2 == 0, "array length in montgomery_square must be even"); 3925 int longwords = len/2; 3926 3927 // Make very sure we don't use so much space that the stack might 3928 // overflow. 512 jints corresponds to an 16384-bit integer and 3929 // will use here a total of 6k bytes of stack space. 3930 int total_allocation = longwords * sizeof (unsigned long) * 3; 3931 guarantee(total_allocation <= 8192, "must be"); 3932 unsigned long *scratch = (unsigned long *)alloca(total_allocation); 3933 3934 // Local scratch arrays 3935 unsigned long 3936 *a = scratch + 0 * longwords, 3937 *n = scratch + 1 * longwords, 3938 *m = scratch + 2 * longwords; 3939 3940 reverse_words((unsigned long *)a_ints, a, longwords); 3941 reverse_words((unsigned long *)n_ints, n, longwords); 3942 3943 if (len >= MONTGOMERY_SQUARING_THRESHOLD) { 3944 ::montgomery_square(a, n, m, (unsigned long)inv, longwords); 3945 } else { 3946 ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords); 3947 } 3948 3949 reverse_words(m, (unsigned long *)m_ints, longwords); 3950 } 3951 3952 #endif // WINDOWS 3953 3954 #ifdef COMPILER2 3955 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame 3956 // 3957 //------------------------------generate_exception_blob--------------------------- 3958 // creates exception blob at the end 3959 // Using exception blob, this code is jumped from a compiled method. 3960 // (see emit_exception_handler in x86_64.ad file) 3961 // 3962 // Given an exception pc at a call we call into the runtime for the 3963 // handler in this method. This handler might merely restore state 3964 // (i.e. callee save registers) unwind the frame and jump to the 3965 // exception handler for the nmethod if there is no Java level handler 3966 // for the nmethod. 3967 // 3968 // This code is entered with a jmp. 3969 // 3970 // Arguments: 3971 // rax: exception oop 3972 // rdx: exception pc 3973 // 3974 // Results: 3975 // rax: exception oop 3976 // rdx: exception pc in caller or ??? 3977 // destination: exception handler of caller 3978 // 3979 // Note: the exception pc MUST be at a call (precise debug information) 3980 // Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved. 3981 // 3982 3983 void OptoRuntime::generate_exception_blob() { 3984 assert(!OptoRuntime::is_callee_saved_register(RDX_num), ""); 3985 assert(!OptoRuntime::is_callee_saved_register(RAX_num), ""); 3986 assert(!OptoRuntime::is_callee_saved_register(RCX_num), ""); 3987 3988 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 3989 3990 // Allocate space for the code 3991 ResourceMark rm; 3992 // Setup code generation tools 3993 CodeBuffer buffer("exception_blob", 2048, 1024); 3994 MacroAssembler* masm = new MacroAssembler(&buffer); 3995 3996 3997 address start = __ pc(); 3998 3999 // Exception pc is 'return address' for stack walker 4000 __ push(rdx); 4001 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog 4002 4003 // Save callee-saved registers. See x86_64.ad. 4004 4005 // rbp is an implicitly saved callee saved register (i.e., the calling 4006 // convention will save/restore it in the prolog/epilog). Other than that 4007 // there are no callee save registers now that adapter frames are gone. 4008 4009 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp); 4010 4011 // Store exception in Thread object. We cannot pass any arguments to the 4012 // handle_exception call, since we do not want to make any assumption 4013 // about the size of the frame where the exception happened in. 4014 // c_rarg0 is either rdi (Linux) or rcx (Windows). 4015 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax); 4016 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx); 4017 4018 // This call does all the hard work. It checks if an exception handler 4019 // exists in the method. 4020 // If so, it returns the handler address. 4021 // If not, it prepares for stack-unwinding, restoring the callee-save 4022 // registers of the frame being removed. 4023 // 4024 // address OptoRuntime::handle_exception_C(JavaThread* thread) 4025 4026 // At a method handle call, the stack may not be properly aligned 4027 // when returning with an exception. 4028 address the_pc = __ pc(); 4029 __ set_last_Java_frame(noreg, noreg, the_pc); 4030 __ mov(c_rarg0, r15_thread); 4031 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack 4032 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); 4033 4034 // Set an oopmap for the call site. This oopmap will only be used if we 4035 // are unwinding the stack. Hence, all locations will be dead. 4036 // Callee-saved registers will be the same as the frame above (i.e., 4037 // handle_exception_stub), since they were restored when we got the 4038 // exception. 4039 4040 OopMapSet* oop_maps = new OopMapSet(); 4041 4042 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 4043 4044 __ reset_last_Java_frame(false); 4045 4046 // Restore callee-saved registers 4047 4048 // rbp is an implicitly saved callee-saved register (i.e., the calling 4049 // convention will save restore it in prolog/epilog) Other than that 4050 // there are no callee save registers now that adapter frames are gone. 4051 4052 __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt)); 4053 4054 __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog 4055 __ pop(rdx); // No need for exception pc anymore 4056 4057 // rax: exception handler 4058 4059 // We have a handler in rax (could be deopt blob). 4060 __ mov(r8, rax); 4061 4062 // Get the exception oop 4063 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 4064 // Get the exception pc in case we are deoptimized 4065 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); 4066 #ifdef ASSERT 4067 __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD); 4068 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD); 4069 #endif 4070 // Clear the exception oop so GC no longer processes it as a root. 4071 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD); 4072 4073 // rax: exception oop 4074 // r8: exception handler 4075 // rdx: exception pc 4076 // Jump to handler 4077 4078 __ jmp(r8); 4079 4080 // Make sure all code is generated 4081 masm->flush(); 4082 4083 // Set exception blob 4084 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); 4085 } 4086 #endif // COMPILER2