1 /*
   2  * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/nativeInst.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "gc/shared/gcLocker.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/barrierSetAssembler.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "memory/universe.hpp"
  43 #include "oops/compiledICHolder.hpp"
  44 #include "oops/klass.inline.hpp"
  45 #include "runtime/safepointMechanism.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "runtime/vm_version.hpp"
  49 #include "utilities/align.hpp"
  50 #include "utilities/formatBuffer.hpp"
  51 #include "vmreg_x86.inline.hpp"
  52 #ifdef COMPILER1
  53 #include "c1/c1_Runtime1.hpp"
  54 #endif
  55 #ifdef COMPILER2
  56 #include "opto/runtime.hpp"
  57 #endif
  58 #if INCLUDE_JVMCI
  59 #include "jvmci/jvmciJavaClasses.hpp"
  60 #endif
  61 
  62 #define __ masm->
  63 
  64 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  65 
  66 class SimpleRuntimeFrame {
  67 
  68   public:
  69 
  70   // Most of the runtime stubs have this simple frame layout.
  71   // This class exists to make the layout shared in one place.
  72   // Offsets are for compiler stack slots, which are jints.
  73   enum layout {
  74     // The frame sender code expects that rbp will be in the "natural" place and
  75     // will override any oopMap setting for it. We must therefore force the layout
  76     // so that it agrees with the frame sender code.
  77     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  78     rbp_off2,
  79     return_off, return_off2,
  80     framesize
  81   };
  82 };
  83 
  84 class RegisterSaver {
  85   // Capture info about frame layout.  Layout offsets are in jint
  86   // units because compiler frame slots are jints.
  87 #define XSAVE_AREA_BEGIN 160
  88 #define XSAVE_AREA_YMM_BEGIN 576
  89 #define XSAVE_AREA_ZMM_BEGIN 1152
  90 #define XSAVE_AREA_UPPERBANK 1664
  91 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  92 #define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off
  93 #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
  94   enum layout {
  95     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  96     xmm_off       = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt,            // offset in fxsave save area
  97     DEF_XMM_OFFS(0),
  98     DEF_XMM_OFFS(1),
  99     // 2..15 are implied in range usage
 100     ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 101     DEF_YMM_OFFS(0),
 102     DEF_YMM_OFFS(1),
 103     // 2..15 are implied in range usage
 104     zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 105     zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt,
 106     DEF_ZMM_OFFS(16),
 107     DEF_ZMM_OFFS(17),
 108     // 18..31 are implied in range usage
 109     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 110     fpu_stateH_end,
 111     r15_off, r15H_off,
 112     r14_off, r14H_off,
 113     r13_off, r13H_off,
 114     r12_off, r12H_off,
 115     r11_off, r11H_off,
 116     r10_off, r10H_off,
 117     r9_off,  r9H_off,
 118     r8_off,  r8H_off,
 119     rdi_off, rdiH_off,
 120     rsi_off, rsiH_off,
 121     ignore_off, ignoreH_off,  // extra copy of rbp
 122     rsp_off, rspH_off,
 123     rbx_off, rbxH_off,
 124     rdx_off, rdxH_off,
 125     rcx_off, rcxH_off,
 126     rax_off, raxH_off,
 127     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 128     align_off, alignH_off,
 129     flags_off, flagsH_off,
 130     // The frame sender code expects that rbp will be in the "natural" place and
 131     // will override any oopMap setting for it. We must therefore force the layout
 132     // so that it agrees with the frame sender code.
 133     rbp_off, rbpH_off,        // copy of rbp we will restore
 134     return_off, returnH_off,  // slot for return address
 135     reg_save_size             // size in compiler stack slots
 136   };
 137 
 138  public:
 139   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 140   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 141 
 142   // Offsets into the register save area
 143   // Used by deoptimization when it is managing result register
 144   // values on its own
 145 
 146   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 147   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 148   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 149   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 150   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 151 
 152   // During deoptimization only the result registers need to be restored,
 153   // all the other values have already been extracted.
 154   static void restore_result_registers(MacroAssembler* masm);
 155 };
 156 
 157 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 158   int off = 0;
 159   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 160   if (UseAVX < 3) {
 161     num_xmm_regs = num_xmm_regs/2;
 162   }
 163 #if COMPILER2_OR_JVMCI
 164   if (save_vectors) {
 165     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 166     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 167   }
 168 #else
 169   assert(!save_vectors, "vectors are generated only by C2 and JVMCI");
 170 #endif
 171 
 172   // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated
 173   int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs);
 174   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 175   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 176   // CodeBlob frame size is in words.
 177   int frame_size_in_words = frame_size_in_bytes / wordSize;
 178   *total_frame_words = frame_size_in_words;
 179 
 180   // Save registers, fpu state, and flags.
 181   // We assume caller has already pushed the return address onto the
 182   // stack, so rsp is 8-byte aligned here.
 183   // We push rpb twice in this sequence because we want the real rbp
 184   // to be under the return like a normal enter.
 185 
 186   __ enter();          // rsp becomes 16-byte aligned here
 187   __ push_CPU_state(); // Push a multiple of 16 bytes
 188 
 189   // push cpu state handles this on EVEX enabled targets
 190   if (save_vectors) {
 191     // Save upper half of YMM registers(0..15)
 192     int base_addr = XSAVE_AREA_YMM_BEGIN;
 193     for (int n = 0; n < 16; n++) {
 194       __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n));
 195     }
 196     if (VM_Version::supports_evex()) {
 197       // Save upper half of ZMM registers(0..15)
 198       base_addr = XSAVE_AREA_ZMM_BEGIN;
 199       for (int n = 0; n < 16; n++) {
 200         __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n));
 201       }
 202       // Save full ZMM registers(16..num_xmm_regs)
 203       base_addr = XSAVE_AREA_UPPERBANK;
 204       off = 0;
 205       int vector_len = Assembler::AVX_512bit;
 206       for (int n = 16; n < num_xmm_regs; n++) {
 207         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
 208       }
 209     }
 210   } else {
 211     if (VM_Version::supports_evex()) {
 212       // Save upper bank of ZMM registers(16..31) for double/float usage
 213       int base_addr = XSAVE_AREA_UPPERBANK;
 214       off = 0;
 215       for (int n = 16; n < num_xmm_regs; n++) {
 216         __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n));
 217       }
 218     }
 219   }
 220   __ vzeroupper();
 221   if (frame::arg_reg_save_area_bytes != 0) {
 222     // Allocate argument register save area
 223     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 224   }
 225 
 226   // Set an oopmap for the call site.  This oopmap will map all
 227   // oop-registers and debug-info registers as callee-saved.  This
 228   // will allow deoptimization at this safepoint to find all possible
 229   // debug-info recordings, as well as let GC find all oops.
 230 
 231   OopMapSet *oop_maps = new OopMapSet();
 232   OopMap* map = new OopMap(frame_size_in_slots, 0);
 233 
 234 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x))
 235 
 236   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 240   // rbp location is known implicitly by the frame sender code, needs no oopmap
 241   // and the location where rbp was saved by is ignored
 242   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 243   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 244   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 245   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 246   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 247   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 248   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 249   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 250   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 251   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 252   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 253   // on EVEX enabled targets, we get it included in the xsave area
 254   off = xmm0_off;
 255   int delta = xmm1_off - off;
 256   for (int n = 0; n < 16; n++) {
 257     XMMRegister xmm_name = as_XMMRegister(n);
 258     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 259     off += delta;
 260   }
 261   if(UseAVX > 2) {
 262     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 263     off = zmm16_off;
 264     delta = zmm17_off - off;
 265     for (int n = 16; n < num_xmm_regs; n++) {
 266       XMMRegister zmm_name = as_XMMRegister(n);
 267       map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg());
 268       off += delta;
 269     }
 270   }
 271 
 272 #if COMPILER2_OR_JVMCI
 273   if (save_vectors) {
 274     off = ymm0_off;
 275     int delta = ymm1_off - off;
 276     for (int n = 0; n < 16; n++) {
 277       XMMRegister ymm_name = as_XMMRegister(n);
 278       map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4));
 279       off += delta;
 280     }
 281   }
 282 #endif // COMPILER2_OR_JVMCI
 283 
 284   // %%% These should all be a waste but we'll keep things as they were for now
 285   if (true) {
 286     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 287     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 288     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 289     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 290     // rbp location is known implicitly by the frame sender code, needs no oopmap
 291     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 292     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 293     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 294     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 295     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 296     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 297     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 298     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 299     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 300     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 301     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 302     // on EVEX enabled targets, we get it included in the xsave area
 303     off = xmm0H_off;
 304     delta = xmm1H_off - off;
 305     for (int n = 0; n < 16; n++) {
 306       XMMRegister xmm_name = as_XMMRegister(n);
 307       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 308       off += delta;
 309     }
 310     if (UseAVX > 2) {
 311       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 312       off = zmm16H_off;
 313       delta = zmm17H_off - off;
 314       for (int n = 16; n < num_xmm_regs; n++) {
 315         XMMRegister zmm_name = as_XMMRegister(n);
 316         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next());
 317         off += delta;
 318       }
 319     }
 320   }
 321 
 322   return map;
 323 }
 324 
 325 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 326   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 327   if (UseAVX < 3) {
 328     num_xmm_regs = num_xmm_regs/2;
 329   }
 330   if (frame::arg_reg_save_area_bytes != 0) {
 331     // Pop arg register save area
 332     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 333   }
 334 
 335 #if COMPILER2_OR_JVMCI
 336   if (restore_vectors) {
 337     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 338     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 339   }
 340 #else
 341   assert(!restore_vectors, "vectors are generated only by C2");
 342 #endif
 343 
 344   __ vzeroupper();
 345 
 346   // On EVEX enabled targets everything is handled in pop fpu state
 347   if (restore_vectors) {
 348     // Restore upper half of YMM registers (0..15)
 349     int base_addr = XSAVE_AREA_YMM_BEGIN;
 350     for (int n = 0; n < 16; n++) {
 351       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16));
 352     }
 353     if (VM_Version::supports_evex()) {
 354       // Restore upper half of ZMM registers (0..15)
 355       base_addr = XSAVE_AREA_ZMM_BEGIN;
 356       for (int n = 0; n < 16; n++) {
 357         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32));
 358       }
 359       // Restore full ZMM registers(16..num_xmm_regs)
 360       base_addr = XSAVE_AREA_UPPERBANK;
 361       int vector_len = Assembler::AVX_512bit;
 362       int off = 0;
 363       for (int n = 16; n < num_xmm_regs; n++) {
 364         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
 365       }
 366     }
 367   } else {
 368     if (VM_Version::supports_evex()) {
 369       // Restore upper bank of ZMM registers(16..31) for double/float usage
 370       int base_addr = XSAVE_AREA_UPPERBANK;
 371       int off = 0;
 372       for (int n = 16; n < num_xmm_regs; n++) {
 373         __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)));
 374       }
 375     }
 376   }
 377 
 378   // Recover CPU state
 379   __ pop_CPU_state();
 380   // Get the rbp described implicitly by the calling convention (no oopMap)
 381   __ pop(rbp);
 382 }
 383 
 384 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 385 
 386   // Just restore result register. Only used by deoptimization. By
 387   // now any callee save register that needs to be restored to a c2
 388   // caller of the deoptee has been extracted into the vframeArray
 389   // and will be stuffed into the c2i adapter we create for later
 390   // restoration so only result registers need to be restored here.
 391 
 392   // Restore fp result register
 393   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 394   // Restore integer result register
 395   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 396   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 397 
 398   // Pop all of the register save are off the stack except the return address
 399   __ addptr(rsp, return_offset_in_bytes());
 400 }
 401 
 402 // Is vector's size (in bytes) bigger than a size saved by default?
 403 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 404 bool SharedRuntime::is_wide_vector(int size) {
 405   return size > 16;
 406 }
 407 
 408 size_t SharedRuntime::trampoline_size() {
 409   return 16;
 410 }
 411 
 412 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 413   __ jump(RuntimeAddress(destination));
 414 }
 415 
 416 // The java_calling_convention describes stack locations as ideal slots on
 417 // a frame with no abi restrictions. Since we must observe abi restrictions
 418 // (like the placement of the register window) the slots must be biased by
 419 // the following value.
 420 static int reg2offset_in(VMReg r) {
 421   // Account for saved rbp and return address
 422   // This should really be in_preserve_stack_slots
 423   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 424 }
 425 
 426 static int reg2offset_out(VMReg r) {
 427   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 428 }
 429 
 430 // ---------------------------------------------------------------------------
 431 // Read the array of BasicTypes from a signature, and compute where the
 432 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 433 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 434 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 435 // as framesizes are fixed.
 436 // VMRegImpl::stack0 refers to the first slot 0(sp).
 437 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 438 // up to RegisterImpl::number_of_registers) are the 64-bit
 439 // integer registers.
 440 
 441 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 442 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 443 // units regardless of build. Of course for i486 there is no 64 bit build
 444 
 445 // The Java calling convention is a "shifted" version of the C ABI.
 446 // By skipping the first C ABI register we can call non-static jni methods
 447 // with small numbers of arguments without having to shuffle the arguments
 448 // at all. Since we control the java ABI we ought to at least get some
 449 // advantage out of it.
 450 
 451 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 452                                            VMRegPair *regs,
 453                                            int total_args_passed,
 454                                            int is_outgoing) {
 455 
 456   // Create the mapping between argument positions and
 457   // registers.
 458   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 459     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 460   };
 461   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 462     j_farg0, j_farg1, j_farg2, j_farg3,
 463     j_farg4, j_farg5, j_farg6, j_farg7
 464   };
 465 
 466 
 467   uint int_args = 0;
 468   uint fp_args = 0;
 469   uint stk_args = 0; // inc by 2 each time
 470 
 471   for (int i = 0; i < total_args_passed; i++) {
 472     switch (sig_bt[i]) {
 473     case T_BOOLEAN:
 474     case T_CHAR:
 475     case T_BYTE:
 476     case T_SHORT:
 477     case T_INT:
 478       if (int_args < Argument::n_int_register_parameters_j) {
 479         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 480       } else {
 481         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 482         stk_args += 2;
 483       }
 484       break;
 485     case T_VOID:
 486       // halves of T_LONG or T_DOUBLE
 487       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 488       regs[i].set_bad();
 489       break;
 490     case T_LONG:
 491       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 492       // fall through
 493     case T_OBJECT:
 494     case T_ARRAY:
 495     case T_ADDRESS:
 496       if (int_args < Argument::n_int_register_parameters_j) {
 497         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 498       } else {
 499         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 500         stk_args += 2;
 501       }
 502       break;
 503     case T_FLOAT:
 504       if (fp_args < Argument::n_float_register_parameters_j) {
 505         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 506       } else {
 507         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 508         stk_args += 2;
 509       }
 510       break;
 511     case T_DOUBLE:
 512       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 513       if (fp_args < Argument::n_float_register_parameters_j) {
 514         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 515       } else {
 516         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 517         stk_args += 2;
 518       }
 519       break;
 520     default:
 521       ShouldNotReachHere();
 522       break;
 523     }
 524   }
 525 
 526   return align_up(stk_args, 2);
 527 }
 528 
 529 // Patch the callers callsite with entry to compiled code if it exists.
 530 static void patch_callers_callsite(MacroAssembler *masm) {
 531   Label L;
 532   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 533   __ jcc(Assembler::equal, L);
 534 
 535   // Save the current stack pointer
 536   __ mov(r13, rsp);
 537   // Schedule the branch target address early.
 538   // Call into the VM to patch the caller, then jump to compiled callee
 539   // rax isn't live so capture return address while we easily can
 540   __ movptr(rax, Address(rsp, 0));
 541 
 542   // align stack so push_CPU_state doesn't fault
 543   __ andptr(rsp, -(StackAlignmentInBytes));
 544   __ push_CPU_state();
 545   __ vzeroupper();
 546   // VM needs caller's callsite
 547   // VM needs target method
 548   // This needs to be a long call since we will relocate this adapter to
 549   // the codeBuffer and it may not reach
 550 
 551   // Allocate argument register save area
 552   if (frame::arg_reg_save_area_bytes != 0) {
 553     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 554   }
 555   __ mov(c_rarg0, rbx);
 556   __ mov(c_rarg1, rax);
 557   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 558 
 559   // De-allocate argument register save area
 560   if (frame::arg_reg_save_area_bytes != 0) {
 561     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 562   }
 563 
 564   __ vzeroupper();
 565   __ pop_CPU_state();
 566   // restore sp
 567   __ mov(rsp, r13);
 568   __ bind(L);
 569 }
 570 
 571 
 572 static void gen_c2i_adapter(MacroAssembler *masm,
 573                             int total_args_passed,
 574                             int comp_args_on_stack,
 575                             const BasicType *sig_bt,
 576                             const VMRegPair *regs,
 577                             Label& skip_fixup) {
 578   // Before we get into the guts of the C2I adapter, see if we should be here
 579   // at all.  We've come from compiled code and are attempting to jump to the
 580   // interpreter, which means the caller made a static call to get here
 581   // (vcalls always get a compiled target if there is one).  Check for a
 582   // compiled target.  If there is one, we need to patch the caller's call.
 583   patch_callers_callsite(masm);
 584 
 585   __ bind(skip_fixup);
 586 
 587   // Since all args are passed on the stack, total_args_passed *
 588   // Interpreter::stackElementSize is the space we need. Plus 1 because
 589   // we also account for the return address location since
 590   // we store it first rather than hold it in rax across all the shuffling
 591 
 592   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 593 
 594   // stack is aligned, keep it that way
 595   extraspace = align_up(extraspace, 2*wordSize);
 596 
 597   // Get return address
 598   __ pop(rax);
 599 
 600   // set senderSP value
 601   __ mov(r13, rsp);
 602 
 603   __ subptr(rsp, extraspace);
 604 
 605   // Store the return address in the expected location
 606   __ movptr(Address(rsp, 0), rax);
 607 
 608   // Now write the args into the outgoing interpreter space
 609   for (int i = 0; i < total_args_passed; i++) {
 610     if (sig_bt[i] == T_VOID) {
 611       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 612       continue;
 613     }
 614 
 615     // offset to start parameters
 616     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 617     int next_off = st_off - Interpreter::stackElementSize;
 618 
 619     // Say 4 args:
 620     // i   st_off
 621     // 0   32 T_LONG
 622     // 1   24 T_VOID
 623     // 2   16 T_OBJECT
 624     // 3    8 T_BOOL
 625     // -    0 return address
 626     //
 627     // However to make thing extra confusing. Because we can fit a long/double in
 628     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 629     // leaves one slot empty and only stores to a single slot. In this case the
 630     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 631 
 632     VMReg r_1 = regs[i].first();
 633     VMReg r_2 = regs[i].second();
 634     if (!r_1->is_valid()) {
 635       assert(!r_2->is_valid(), "");
 636       continue;
 637     }
 638     if (r_1->is_stack()) {
 639       // memory to memory use rax
 640       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 641       if (!r_2->is_valid()) {
 642         // sign extend??
 643         __ movl(rax, Address(rsp, ld_off));
 644         __ movptr(Address(rsp, st_off), rax);
 645 
 646       } else {
 647 
 648         __ movq(rax, Address(rsp, ld_off));
 649 
 650         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 651         // T_DOUBLE and T_LONG use two slots in the interpreter
 652         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 653           // ld_off == LSW, ld_off+wordSize == MSW
 654           // st_off == MSW, next_off == LSW
 655           __ movq(Address(rsp, next_off), rax);
 656 #ifdef ASSERT
 657           // Overwrite the unused slot with known junk
 658           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 659           __ movptr(Address(rsp, st_off), rax);
 660 #endif /* ASSERT */
 661         } else {
 662           __ movq(Address(rsp, st_off), rax);
 663         }
 664       }
 665     } else if (r_1->is_Register()) {
 666       Register r = r_1->as_Register();
 667       if (!r_2->is_valid()) {
 668         // must be only an int (or less ) so move only 32bits to slot
 669         // why not sign extend??
 670         __ movl(Address(rsp, st_off), r);
 671       } else {
 672         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 673         // T_DOUBLE and T_LONG use two slots in the interpreter
 674         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 675           // long/double in gpr
 676 #ifdef ASSERT
 677           // Overwrite the unused slot with known junk
 678           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 679           __ movptr(Address(rsp, st_off), rax);
 680 #endif /* ASSERT */
 681           __ movq(Address(rsp, next_off), r);
 682         } else {
 683           __ movptr(Address(rsp, st_off), r);
 684         }
 685       }
 686     } else {
 687       assert(r_1->is_XMMRegister(), "");
 688       if (!r_2->is_valid()) {
 689         // only a float use just part of the slot
 690         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 691       } else {
 692 #ifdef ASSERT
 693         // Overwrite the unused slot with known junk
 694         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 695         __ movptr(Address(rsp, st_off), rax);
 696 #endif /* ASSERT */
 697         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 698       }
 699     }
 700   }
 701 
 702   // Schedule the branch target address early.
 703   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 704   __ jmp(rcx);
 705 }
 706 
 707 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 708                         address code_start, address code_end,
 709                         Label& L_ok) {
 710   Label L_fail;
 711   __ lea(temp_reg, ExternalAddress(code_start));
 712   __ cmpptr(pc_reg, temp_reg);
 713   __ jcc(Assembler::belowEqual, L_fail);
 714   __ lea(temp_reg, ExternalAddress(code_end));
 715   __ cmpptr(pc_reg, temp_reg);
 716   __ jcc(Assembler::below, L_ok);
 717   __ bind(L_fail);
 718 }
 719 
 720 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 721                                     int total_args_passed,
 722                                     int comp_args_on_stack,
 723                                     const BasicType *sig_bt,
 724                                     const VMRegPair *regs) {
 725 
 726   // Note: r13 contains the senderSP on entry. We must preserve it since
 727   // we may do a i2c -> c2i transition if we lose a race where compiled
 728   // code goes non-entrant while we get args ready.
 729   // In addition we use r13 to locate all the interpreter args as
 730   // we must align the stack to 16 bytes on an i2c entry else we
 731   // lose alignment we expect in all compiled code and register
 732   // save code can segv when fxsave instructions find improperly
 733   // aligned stack pointer.
 734 
 735   // Adapters can be frameless because they do not require the caller
 736   // to perform additional cleanup work, such as correcting the stack pointer.
 737   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 738   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 739   // even if a callee has modified the stack pointer.
 740   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 741   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 742   // up via the senderSP register).
 743   // In other words, if *either* the caller or callee is interpreted, we can
 744   // get the stack pointer repaired after a call.
 745   // This is why c2i and i2c adapters cannot be indefinitely composed.
 746   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 747   // both caller and callee would be compiled methods, and neither would
 748   // clean up the stack pointer changes performed by the two adapters.
 749   // If this happens, control eventually transfers back to the compiled
 750   // caller, but with an uncorrected stack, causing delayed havoc.
 751 
 752   // Pick up the return address
 753   __ movptr(rax, Address(rsp, 0));
 754 
 755   if (VerifyAdapterCalls &&
 756       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 757     // So, let's test for cascading c2i/i2c adapters right now.
 758     //  assert(Interpreter::contains($return_addr) ||
 759     //         StubRoutines::contains($return_addr),
 760     //         "i2c adapter must return to an interpreter frame");
 761     __ block_comment("verify_i2c { ");
 762     Label L_ok;
 763     if (Interpreter::code() != NULL)
 764       range_check(masm, rax, r11,
 765                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 766                   L_ok);
 767     if (StubRoutines::code1() != NULL)
 768       range_check(masm, rax, r11,
 769                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 770                   L_ok);
 771     if (StubRoutines::code2() != NULL)
 772       range_check(masm, rax, r11,
 773                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 774                   L_ok);
 775     const char* msg = "i2c adapter must return to an interpreter frame";
 776     __ block_comment(msg);
 777     __ stop(msg);
 778     __ bind(L_ok);
 779     __ block_comment("} verify_i2ce ");
 780   }
 781 
 782   // Must preserve original SP for loading incoming arguments because
 783   // we need to align the outgoing SP for compiled code.
 784   __ movptr(r11, rsp);
 785 
 786   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 787   // in registers, we will occasionally have no stack args.
 788   int comp_words_on_stack = 0;
 789   if (comp_args_on_stack) {
 790     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 791     // registers are below.  By subtracting stack0, we either get a negative
 792     // number (all values in registers) or the maximum stack slot accessed.
 793 
 794     // Convert 4-byte c2 stack slots to words.
 795     comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 796     // Round up to miminum stack alignment, in wordSize
 797     comp_words_on_stack = align_up(comp_words_on_stack, 2);
 798     __ subptr(rsp, comp_words_on_stack * wordSize);
 799   }
 800 
 801 
 802   // Ensure compiled code always sees stack at proper alignment
 803   __ andptr(rsp, -16);
 804 
 805   // push the return address and misalign the stack that youngest frame always sees
 806   // as far as the placement of the call instruction
 807   __ push(rax);
 808 
 809   // Put saved SP in another register
 810   const Register saved_sp = rax;
 811   __ movptr(saved_sp, r11);
 812 
 813   // Will jump to the compiled code just as if compiled code was doing it.
 814   // Pre-load the register-jump target early, to schedule it better.
 815   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 816 
 817 #if INCLUDE_JVMCI
 818   if (EnableJVMCI || UseAOT) {
 819     // check if this call should be routed towards a specific entry point
 820     __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 821     Label no_alternative_target;
 822     __ jcc(Assembler::equal, no_alternative_target);
 823     __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 824     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 825     __ bind(no_alternative_target);
 826   }
 827 #endif // INCLUDE_JVMCI
 828 
 829   // Now generate the shuffle code.  Pick up all register args and move the
 830   // rest through the floating point stack top.
 831   for (int i = 0; i < total_args_passed; i++) {
 832     if (sig_bt[i] == T_VOID) {
 833       // Longs and doubles are passed in native word order, but misaligned
 834       // in the 32-bit build.
 835       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 836       continue;
 837     }
 838 
 839     // Pick up 0, 1 or 2 words from SP+offset.
 840 
 841     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 842             "scrambled load targets?");
 843     // Load in argument order going down.
 844     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 845     // Point to interpreter value (vs. tag)
 846     int next_off = ld_off - Interpreter::stackElementSize;
 847     //
 848     //
 849     //
 850     VMReg r_1 = regs[i].first();
 851     VMReg r_2 = regs[i].second();
 852     if (!r_1->is_valid()) {
 853       assert(!r_2->is_valid(), "");
 854       continue;
 855     }
 856     if (r_1->is_stack()) {
 857       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 858       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 859 
 860       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 861       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 862       // will be generated.
 863       if (!r_2->is_valid()) {
 864         // sign extend???
 865         __ movl(r13, Address(saved_sp, ld_off));
 866         __ movptr(Address(rsp, st_off), r13);
 867       } else {
 868         //
 869         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 870         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 871         // So we must adjust where to pick up the data to match the interpreter.
 872         //
 873         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 874         // are accessed as negative so LSW is at LOW address
 875 
 876         // ld_off is MSW so get LSW
 877         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 878                            next_off : ld_off;
 879         __ movq(r13, Address(saved_sp, offset));
 880         // st_off is LSW (i.e. reg.first())
 881         __ movq(Address(rsp, st_off), r13);
 882       }
 883     } else if (r_1->is_Register()) {  // Register argument
 884       Register r = r_1->as_Register();
 885       assert(r != rax, "must be different");
 886       if (r_2->is_valid()) {
 887         //
 888         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 889         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 890         // So we must adjust where to pick up the data to match the interpreter.
 891 
 892         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 893                            next_off : ld_off;
 894 
 895         // this can be a misaligned move
 896         __ movq(r, Address(saved_sp, offset));
 897       } else {
 898         // sign extend and use a full word?
 899         __ movl(r, Address(saved_sp, ld_off));
 900       }
 901     } else {
 902       if (!r_2->is_valid()) {
 903         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 904       } else {
 905         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 906       }
 907     }
 908   }
 909 
 910   // 6243940 We might end up in handle_wrong_method if
 911   // the callee is deoptimized as we race thru here. If that
 912   // happens we don't want to take a safepoint because the
 913   // caller frame will look interpreted and arguments are now
 914   // "compiled" so it is much better to make this transition
 915   // invisible to the stack walking code. Unfortunately if
 916   // we try and find the callee by normal means a safepoint
 917   // is possible. So we stash the desired callee in the thread
 918   // and the vm will find there should this case occur.
 919 
 920   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 921 
 922   // put Method* where a c2i would expect should we end up there
 923   // only needed becaus eof c2 resolve stubs return Method* as a result in
 924   // rax
 925   __ mov(rax, rbx);
 926   __ jmp(r11);
 927 }
 928 
 929 // ---------------------------------------------------------------
 930 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 931                                                             int total_args_passed,
 932                                                             int comp_args_on_stack,
 933                                                             const BasicType *sig_bt,
 934                                                             const VMRegPair *regs,
 935                                                             AdapterFingerPrint* fingerprint) {
 936   address i2c_entry = __ pc();
 937 
 938   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 939 
 940   // -------------------------------------------------------------------------
 941   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
 942   // to the interpreter.  The args start out packed in the compiled layout.  They
 943   // need to be unpacked into the interpreter layout.  This will almost always
 944   // require some stack space.  We grow the current (compiled) stack, then repack
 945   // the args.  We  finally end in a jump to the generic interpreter entry point.
 946   // On exit from the interpreter, the interpreter will restore our SP (lest the
 947   // compiled code, which relys solely on SP and not RBP, get sick).
 948 
 949   address c2i_unverified_entry = __ pc();
 950   Label skip_fixup;
 951   Label ok;
 952 
 953   Register holder = rax;
 954   Register receiver = j_rarg0;
 955   Register temp = rbx;
 956 
 957   {
 958     __ load_klass(temp, receiver);
 959     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 960     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
 961     __ jcc(Assembler::equal, ok);
 962     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 963 
 964     __ bind(ok);
 965     // Method might have been compiled since the call site was patched to
 966     // interpreted if that is the case treat it as a miss so we can get
 967     // the call site corrected.
 968     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 969     __ jcc(Assembler::equal, skip_fixup);
 970     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 971   }
 972 
 973   address c2i_entry = __ pc();
 974 
 975   // Class initialization barrier for static methods
 976   address c2i_no_clinit_check_entry = NULL;
 977   if (VM_Version::supports_fast_class_init_checks()) {
 978     Label L_skip_barrier;
 979     Register method = rbx;
 980 
 981     { // Bypass the barrier for non-static methods
 982       Register flags  = rscratch1;
 983       __ movl(flags, Address(method, Method::access_flags_offset()));
 984       __ testl(flags, JVM_ACC_STATIC);
 985       __ jcc(Assembler::zero, L_skip_barrier); // non-static
 986     }
 987 
 988     Register klass = rscratch1;
 989     __ load_method_holder(klass, method);
 990     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
 991 
 992     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
 993 
 994     __ bind(L_skip_barrier);
 995     c2i_no_clinit_check_entry = __ pc();
 996   }
 997 
 998   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 999   bs->c2i_entry_barrier(masm);
1000 
1001   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1002 
1003   __ flush();
1004   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
1005 }
1006 
1007 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1008                                          VMRegPair *regs,
1009                                          VMRegPair *regs2,
1010                                          int total_args_passed) {
1011   assert(regs2 == NULL, "not needed on x86");
1012 // We return the amount of VMRegImpl stack slots we need to reserve for all
1013 // the arguments NOT counting out_preserve_stack_slots.
1014 
1015 // NOTE: These arrays will have to change when c1 is ported
1016 #ifdef _WIN64
1017     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1018       c_rarg0, c_rarg1, c_rarg2, c_rarg3
1019     };
1020     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1021       c_farg0, c_farg1, c_farg2, c_farg3
1022     };
1023 #else
1024     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1025       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
1026     };
1027     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1028       c_farg0, c_farg1, c_farg2, c_farg3,
1029       c_farg4, c_farg5, c_farg6, c_farg7
1030     };
1031 #endif // _WIN64
1032 
1033 
1034     uint int_args = 0;
1035     uint fp_args = 0;
1036     uint stk_args = 0; // inc by 2 each time
1037 
1038     for (int i = 0; i < total_args_passed; i++) {
1039       switch (sig_bt[i]) {
1040       case T_BOOLEAN:
1041       case T_CHAR:
1042       case T_BYTE:
1043       case T_SHORT:
1044       case T_INT:
1045         if (int_args < Argument::n_int_register_parameters_c) {
1046           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
1047 #ifdef _WIN64
1048           fp_args++;
1049           // Allocate slots for callee to stuff register args the stack.
1050           stk_args += 2;
1051 #endif
1052         } else {
1053           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1054           stk_args += 2;
1055         }
1056         break;
1057       case T_LONG:
1058         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1059         // fall through
1060       case T_OBJECT:
1061       case T_ARRAY:
1062       case T_ADDRESS:
1063       case T_METADATA:
1064         if (int_args < Argument::n_int_register_parameters_c) {
1065           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1066 #ifdef _WIN64
1067           fp_args++;
1068           stk_args += 2;
1069 #endif
1070         } else {
1071           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1072           stk_args += 2;
1073         }
1074         break;
1075       case T_FLOAT:
1076         if (fp_args < Argument::n_float_register_parameters_c) {
1077           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1078 #ifdef _WIN64
1079           int_args++;
1080           // Allocate slots for callee to stuff register args the stack.
1081           stk_args += 2;
1082 #endif
1083         } else {
1084           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1085           stk_args += 2;
1086         }
1087         break;
1088       case T_DOUBLE:
1089         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1090         if (fp_args < Argument::n_float_register_parameters_c) {
1091           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1092 #ifdef _WIN64
1093           int_args++;
1094           // Allocate slots for callee to stuff register args the stack.
1095           stk_args += 2;
1096 #endif
1097         } else {
1098           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1099           stk_args += 2;
1100         }
1101         break;
1102       case T_VOID: // Halves of longs and doubles
1103         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1104         regs[i].set_bad();
1105         break;
1106       default:
1107         ShouldNotReachHere();
1108         break;
1109       }
1110     }
1111 #ifdef _WIN64
1112   // windows abi requires that we always allocate enough stack space
1113   // for 4 64bit registers to be stored down.
1114   if (stk_args < 8) {
1115     stk_args = 8;
1116   }
1117 #endif // _WIN64
1118 
1119   return stk_args;
1120 }
1121 
1122 // On 64 bit we will store integer like items to the stack as
1123 // 64 bits items (sparc abi) even though java would only store
1124 // 32bits for a parameter. On 32bit it will simply be 32 bits
1125 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1126 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1127   if (src.first()->is_stack()) {
1128     if (dst.first()->is_stack()) {
1129       // stack to stack
1130       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1131       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1132     } else {
1133       // stack to reg
1134       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1135     }
1136   } else if (dst.first()->is_stack()) {
1137     // reg to stack
1138     // Do we really have to sign extend???
1139     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1140     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1141   } else {
1142     // Do we really have to sign extend???
1143     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1144     if (dst.first() != src.first()) {
1145       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1146     }
1147   }
1148 }
1149 
1150 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1151   if (src.first()->is_stack()) {
1152     if (dst.first()->is_stack()) {
1153       // stack to stack
1154       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1155       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1156     } else {
1157       // stack to reg
1158       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1159     }
1160   } else if (dst.first()->is_stack()) {
1161     // reg to stack
1162     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1163   } else {
1164     if (dst.first() != src.first()) {
1165       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1166     }
1167   }
1168 }
1169 
1170 // An oop arg. Must pass a handle not the oop itself
1171 static void object_move(MacroAssembler* masm,
1172                         OopMap* map,
1173                         int oop_handle_offset,
1174                         int framesize_in_slots,
1175                         VMRegPair src,
1176                         VMRegPair dst,
1177                         bool is_receiver,
1178                         int* receiver_offset) {
1179 
1180   // must pass a handle. First figure out the location we use as a handle
1181 
1182   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1183 
1184   // See if oop is NULL if it is we need no handle
1185 
1186   if (src.first()->is_stack()) {
1187 
1188     // Oop is already on the stack as an argument
1189     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1190     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1191     if (is_receiver) {
1192       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1193     }
1194 
1195     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1196     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1197     // conditionally move a NULL
1198     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1199   } else {
1200 
1201     // Oop is in an a register we must store it to the space we reserve
1202     // on the stack for oop_handles and pass a handle if oop is non-NULL
1203 
1204     const Register rOop = src.first()->as_Register();
1205     int oop_slot;
1206     if (rOop == j_rarg0)
1207       oop_slot = 0;
1208     else if (rOop == j_rarg1)
1209       oop_slot = 1;
1210     else if (rOop == j_rarg2)
1211       oop_slot = 2;
1212     else if (rOop == j_rarg3)
1213       oop_slot = 3;
1214     else if (rOop == j_rarg4)
1215       oop_slot = 4;
1216     else {
1217       assert(rOop == j_rarg5, "wrong register");
1218       oop_slot = 5;
1219     }
1220 
1221     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1222     int offset = oop_slot*VMRegImpl::stack_slot_size;
1223 
1224     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1225     // Store oop in handle area, may be NULL
1226     __ movptr(Address(rsp, offset), rOop);
1227     if (is_receiver) {
1228       *receiver_offset = offset;
1229     }
1230 
1231     __ cmpptr(rOop, (int32_t)NULL_WORD);
1232     __ lea(rHandle, Address(rsp, offset));
1233     // conditionally move a NULL from the handle area where it was just stored
1234     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1235   }
1236 
1237   // If arg is on the stack then place it otherwise it is already in correct reg.
1238   if (dst.first()->is_stack()) {
1239     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1240   }
1241 }
1242 
1243 // A float arg may have to do float reg int reg conversion
1244 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1245   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1246 
1247   // The calling conventions assures us that each VMregpair is either
1248   // all really one physical register or adjacent stack slots.
1249   // This greatly simplifies the cases here compared to sparc.
1250 
1251   if (src.first()->is_stack()) {
1252     if (dst.first()->is_stack()) {
1253       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1254       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1255     } else {
1256       // stack to reg
1257       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1258       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1259     }
1260   } else if (dst.first()->is_stack()) {
1261     // reg to stack
1262     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1263     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1264   } else {
1265     // reg to reg
1266     // In theory these overlap but the ordering is such that this is likely a nop
1267     if ( src.first() != dst.first()) {
1268       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1269     }
1270   }
1271 }
1272 
1273 // A long move
1274 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1275 
1276   // The calling conventions assures us that each VMregpair is either
1277   // all really one physical register or adjacent stack slots.
1278   // This greatly simplifies the cases here compared to sparc.
1279 
1280   if (src.is_single_phys_reg() ) {
1281     if (dst.is_single_phys_reg()) {
1282       if (dst.first() != src.first()) {
1283         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1284       }
1285     } else {
1286       assert(dst.is_single_reg(), "not a stack pair");
1287       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1288     }
1289   } else if (dst.is_single_phys_reg()) {
1290     assert(src.is_single_reg(),  "not a stack pair");
1291     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1292   } else {
1293     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1294     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1295     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1296   }
1297 }
1298 
1299 // A double move
1300 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1301 
1302   // The calling conventions assures us that each VMregpair is either
1303   // all really one physical register or adjacent stack slots.
1304   // This greatly simplifies the cases here compared to sparc.
1305 
1306   if (src.is_single_phys_reg() ) {
1307     if (dst.is_single_phys_reg()) {
1308       // In theory these overlap but the ordering is such that this is likely a nop
1309       if ( src.first() != dst.first()) {
1310         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1311       }
1312     } else {
1313       assert(dst.is_single_reg(), "not a stack pair");
1314       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1315     }
1316   } else if (dst.is_single_phys_reg()) {
1317     assert(src.is_single_reg(),  "not a stack pair");
1318     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1319   } else {
1320     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1321     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1322     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1323   }
1324 }
1325 
1326 
1327 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1328   // We always ignore the frame_slots arg and just use the space just below frame pointer
1329   // which by this time is free to use
1330   switch (ret_type) {
1331   case T_FLOAT:
1332     __ movflt(Address(rbp, -wordSize), xmm0);
1333     break;
1334   case T_DOUBLE:
1335     __ movdbl(Address(rbp, -wordSize), xmm0);
1336     break;
1337   case T_VOID:  break;
1338   default: {
1339     __ movptr(Address(rbp, -wordSize), rax);
1340     }
1341   }
1342 }
1343 
1344 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1345   // We always ignore the frame_slots arg and just use the space just below frame pointer
1346   // which by this time is free to use
1347   switch (ret_type) {
1348   case T_FLOAT:
1349     __ movflt(xmm0, Address(rbp, -wordSize));
1350     break;
1351   case T_DOUBLE:
1352     __ movdbl(xmm0, Address(rbp, -wordSize));
1353     break;
1354   case T_VOID:  break;
1355   default: {
1356     __ movptr(rax, Address(rbp, -wordSize));
1357     }
1358   }
1359 }
1360 
1361 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1362     for ( int i = first_arg ; i < arg_count ; i++ ) {
1363       if (args[i].first()->is_Register()) {
1364         __ push(args[i].first()->as_Register());
1365       } else if (args[i].first()->is_XMMRegister()) {
1366         __ subptr(rsp, 2*wordSize);
1367         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1368       }
1369     }
1370 }
1371 
1372 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1373     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1374       if (args[i].first()->is_Register()) {
1375         __ pop(args[i].first()->as_Register());
1376       } else if (args[i].first()->is_XMMRegister()) {
1377         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1378         __ addptr(rsp, 2*wordSize);
1379       }
1380     }
1381 }
1382 
1383 
1384 static void save_or_restore_arguments(MacroAssembler* masm,
1385                                       const int stack_slots,
1386                                       const int total_in_args,
1387                                       const int arg_save_area,
1388                                       OopMap* map,
1389                                       VMRegPair* in_regs,
1390                                       BasicType* in_sig_bt) {
1391   // if map is non-NULL then the code should store the values,
1392   // otherwise it should load them.
1393   int slot = arg_save_area;
1394   // Save down double word first
1395   for ( int i = 0; i < total_in_args; i++) {
1396     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1397       int offset = slot * VMRegImpl::stack_slot_size;
1398       slot += VMRegImpl::slots_per_word;
1399       assert(slot <= stack_slots, "overflow");
1400       if (map != NULL) {
1401         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1402       } else {
1403         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1404       }
1405     }
1406     if (in_regs[i].first()->is_Register() &&
1407         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1408       int offset = slot * VMRegImpl::stack_slot_size;
1409       if (map != NULL) {
1410         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1411         if (in_sig_bt[i] == T_ARRAY) {
1412           map->set_oop(VMRegImpl::stack2reg(slot));;
1413         }
1414       } else {
1415         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1416       }
1417       slot += VMRegImpl::slots_per_word;
1418     }
1419   }
1420   // Save or restore single word registers
1421   for ( int i = 0; i < total_in_args; i++) {
1422     if (in_regs[i].first()->is_Register()) {
1423       int offset = slot * VMRegImpl::stack_slot_size;
1424       slot++;
1425       assert(slot <= stack_slots, "overflow");
1426 
1427       // Value is in an input register pass we must flush it to the stack
1428       const Register reg = in_regs[i].first()->as_Register();
1429       switch (in_sig_bt[i]) {
1430         case T_BOOLEAN:
1431         case T_CHAR:
1432         case T_BYTE:
1433         case T_SHORT:
1434         case T_INT:
1435           if (map != NULL) {
1436             __ movl(Address(rsp, offset), reg);
1437           } else {
1438             __ movl(reg, Address(rsp, offset));
1439           }
1440           break;
1441         case T_ARRAY:
1442         case T_LONG:
1443           // handled above
1444           break;
1445         case T_OBJECT:
1446         default: ShouldNotReachHere();
1447       }
1448     } else if (in_regs[i].first()->is_XMMRegister()) {
1449       if (in_sig_bt[i] == T_FLOAT) {
1450         int offset = slot * VMRegImpl::stack_slot_size;
1451         slot++;
1452         assert(slot <= stack_slots, "overflow");
1453         if (map != NULL) {
1454           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1455         } else {
1456           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1457         }
1458       }
1459     } else if (in_regs[i].first()->is_stack()) {
1460       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1461         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1462         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1463       }
1464     }
1465   }
1466 }
1467 
1468 // Pin object, return pinned object or null in rax
1469 static void gen_pin_object(MacroAssembler* masm,
1470                            VMRegPair reg) {
1471   __ block_comment("gen_pin_object {");
1472 
1473   // rax always contains oop, either incoming or
1474   // pinned.
1475   Register tmp_reg = rax;
1476 
1477   Label is_null;
1478   VMRegPair tmp;
1479   VMRegPair in_reg = reg;
1480 
1481   tmp.set_ptr(tmp_reg->as_VMReg());
1482   if (reg.first()->is_stack()) {
1483     // Load the arg up from the stack
1484     move_ptr(masm, reg, tmp);
1485     reg = tmp;
1486   } else {
1487     __ movptr(rax, reg.first()->as_Register());
1488   }
1489   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1490   __ jccb(Assembler::equal, is_null);
1491 
1492   if (reg.first()->as_Register() != c_rarg1) {
1493     __ movptr(c_rarg1, reg.first()->as_Register());
1494   }
1495 
1496   __ call_VM_leaf(
1497     CAST_FROM_FN_PTR(address, SharedRuntime::pin_object),
1498     r15_thread, c_rarg1);
1499 
1500   __ bind(is_null);
1501   __ block_comment("} gen_pin_object");
1502 }
1503 
1504 // Unpin object
1505 static void gen_unpin_object(MacroAssembler* masm,
1506                              VMRegPair reg) {
1507   __ block_comment("gen_unpin_object {");
1508   Label is_null;
1509 
1510   if (reg.first()->is_stack()) {
1511     __ movptr(c_rarg1, Address(rbp, reg2offset_in(reg.first())));
1512   } else if (reg.first()->as_Register() != c_rarg1) {
1513     __ movptr(c_rarg1, reg.first()->as_Register());
1514   }
1515 
1516   __ testptr(c_rarg1, c_rarg1);
1517   __ jccb(Assembler::equal, is_null);
1518 
1519   __ call_VM_leaf(
1520     CAST_FROM_FN_PTR(address, SharedRuntime::unpin_object),
1521     r15_thread, c_rarg1);
1522 
1523   __ bind(is_null);
1524   __ block_comment("} gen_unpin_object");
1525 }
1526 
1527 // Check GCLocker::needs_gc and enter the runtime if it's true.  This
1528 // keeps a new JNI critical region from starting until a GC has been
1529 // forced.  Save down any oops in registers and describe them in an
1530 // OopMap.
1531 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1532                                                int stack_slots,
1533                                                int total_c_args,
1534                                                int total_in_args,
1535                                                int arg_save_area,
1536                                                OopMapSet* oop_maps,
1537                                                VMRegPair* in_regs,
1538                                                BasicType* in_sig_bt) {
1539   __ block_comment("check GCLocker::needs_gc");
1540   Label cont;
1541   __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1542   __ jcc(Assembler::equal, cont);
1543 
1544   // Save down any incoming oops and call into the runtime to halt for a GC
1545 
1546   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1547   save_or_restore_arguments(masm, stack_slots, total_in_args,
1548                             arg_save_area, map, in_regs, in_sig_bt);
1549 
1550   address the_pc = __ pc();
1551   oop_maps->add_gc_map( __ offset(), map);
1552   __ set_last_Java_frame(rsp, noreg, the_pc);
1553 
1554   __ block_comment("block_for_jni_critical");
1555   __ movptr(c_rarg0, r15_thread);
1556   __ mov(r12, rsp); // remember sp
1557   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1558   __ andptr(rsp, -16); // align stack as required by ABI
1559   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1560   __ mov(rsp, r12); // restore sp
1561   __ reinit_heapbase();
1562 
1563   __ reset_last_Java_frame(false);
1564 
1565   save_or_restore_arguments(masm, stack_slots, total_in_args,
1566                             arg_save_area, NULL, in_regs, in_sig_bt);
1567   __ bind(cont);
1568 #ifdef ASSERT
1569   if (StressCriticalJNINatives) {
1570     // Stress register saving
1571     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1572     save_or_restore_arguments(masm, stack_slots, total_in_args,
1573                               arg_save_area, map, in_regs, in_sig_bt);
1574     // Destroy argument registers
1575     for (int i = 0; i < total_in_args - 1; i++) {
1576       if (in_regs[i].first()->is_Register()) {
1577         const Register reg = in_regs[i].first()->as_Register();
1578         __ xorptr(reg, reg);
1579       } else if (in_regs[i].first()->is_XMMRegister()) {
1580         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1581       } else if (in_regs[i].first()->is_FloatRegister()) {
1582         ShouldNotReachHere();
1583       } else if (in_regs[i].first()->is_stack()) {
1584         // Nothing to do
1585       } else {
1586         ShouldNotReachHere();
1587       }
1588       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1589         i++;
1590       }
1591     }
1592 
1593     save_or_restore_arguments(masm, stack_slots, total_in_args,
1594                               arg_save_area, NULL, in_regs, in_sig_bt);
1595   }
1596 #endif
1597 }
1598 
1599 // Unpack an array argument into a pointer to the body and the length
1600 // if the array is non-null, otherwise pass 0 for both.
1601 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1602   Register tmp_reg = rax;
1603   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1604          "possible collision");
1605   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1606          "possible collision");
1607 
1608   __ block_comment("unpack_array_argument {");
1609 
1610   // Pass the length, ptr pair
1611   Label is_null, done;
1612   VMRegPair tmp;
1613   tmp.set_ptr(tmp_reg->as_VMReg());
1614   if (reg.first()->is_stack()) {
1615     // Load the arg up from the stack
1616     move_ptr(masm, reg, tmp);
1617     reg = tmp;
1618   }
1619   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1620   __ jccb(Assembler::equal, is_null);
1621   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1622   move_ptr(masm, tmp, body_arg);
1623   // load the length relative to the body.
1624   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1625                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1626   move32_64(masm, tmp, length_arg);
1627   __ jmpb(done);
1628   __ bind(is_null);
1629   // Pass zeros
1630   __ xorptr(tmp_reg, tmp_reg);
1631   move_ptr(masm, tmp, body_arg);
1632   move32_64(masm, tmp, length_arg);
1633   __ bind(done);
1634 
1635   __ block_comment("} unpack_array_argument");
1636 }
1637 
1638 
1639 // Different signatures may require very different orders for the move
1640 // to avoid clobbering other arguments.  There's no simple way to
1641 // order them safely.  Compute a safe order for issuing stores and
1642 // break any cycles in those stores.  This code is fairly general but
1643 // it's not necessary on the other platforms so we keep it in the
1644 // platform dependent code instead of moving it into a shared file.
1645 // (See bugs 7013347 & 7145024.)
1646 // Note that this code is specific to LP64.
1647 class ComputeMoveOrder: public StackObj {
1648   class MoveOperation: public ResourceObj {
1649     friend class ComputeMoveOrder;
1650    private:
1651     VMRegPair        _src;
1652     VMRegPair        _dst;
1653     int              _src_index;
1654     int              _dst_index;
1655     bool             _processed;
1656     MoveOperation*  _next;
1657     MoveOperation*  _prev;
1658 
1659     static int get_id(VMRegPair r) {
1660       return r.first()->value();
1661     }
1662 
1663    public:
1664     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1665       _src(src)
1666     , _dst(dst)
1667     , _src_index(src_index)
1668     , _dst_index(dst_index)
1669     , _processed(false)
1670     , _next(NULL)
1671     , _prev(NULL) {
1672     }
1673 
1674     VMRegPair src() const              { return _src; }
1675     int src_id() const                 { return get_id(src()); }
1676     int src_index() const              { return _src_index; }
1677     VMRegPair dst() const              { return _dst; }
1678     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1679     int dst_index() const              { return _dst_index; }
1680     int dst_id() const                 { return get_id(dst()); }
1681     MoveOperation* next() const       { return _next; }
1682     MoveOperation* prev() const       { return _prev; }
1683     void set_processed()               { _processed = true; }
1684     bool is_processed() const          { return _processed; }
1685 
1686     // insert
1687     void break_cycle(VMRegPair temp_register) {
1688       // create a new store following the last store
1689       // to move from the temp_register to the original
1690       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1691 
1692       // break the cycle of links and insert new_store at the end
1693       // break the reverse link.
1694       MoveOperation* p = prev();
1695       assert(p->next() == this, "must be");
1696       _prev = NULL;
1697       p->_next = new_store;
1698       new_store->_prev = p;
1699 
1700       // change the original store to save it's value in the temp.
1701       set_dst(-1, temp_register);
1702     }
1703 
1704     void link(GrowableArray<MoveOperation*>& killer) {
1705       // link this store in front the store that it depends on
1706       MoveOperation* n = killer.at_grow(src_id(), NULL);
1707       if (n != NULL) {
1708         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1709         _next = n;
1710         n->_prev = this;
1711       }
1712     }
1713   };
1714 
1715  private:
1716   GrowableArray<MoveOperation*> edges;
1717 
1718  public:
1719   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1720                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1721     // Move operations where the dest is the stack can all be
1722     // scheduled first since they can't interfere with the other moves.
1723     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1724       if (in_sig_bt[i] == T_ARRAY) {
1725         c_arg--;
1726         if (out_regs[c_arg].first()->is_stack() &&
1727             out_regs[c_arg + 1].first()->is_stack()) {
1728           arg_order.push(i);
1729           arg_order.push(c_arg);
1730         } else {
1731           if (out_regs[c_arg].first()->is_stack() ||
1732               in_regs[i].first() == out_regs[c_arg].first()) {
1733             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1734           } else {
1735             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1736           }
1737         }
1738       } else if (in_sig_bt[i] == T_VOID) {
1739         arg_order.push(i);
1740         arg_order.push(c_arg);
1741       } else {
1742         if (out_regs[c_arg].first()->is_stack() ||
1743             in_regs[i].first() == out_regs[c_arg].first()) {
1744           arg_order.push(i);
1745           arg_order.push(c_arg);
1746         } else {
1747           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1748         }
1749       }
1750     }
1751     // Break any cycles in the register moves and emit the in the
1752     // proper order.
1753     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1754     for (int i = 0; i < stores->length(); i++) {
1755       arg_order.push(stores->at(i)->src_index());
1756       arg_order.push(stores->at(i)->dst_index());
1757     }
1758  }
1759 
1760   // Collected all the move operations
1761   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1762     if (src.first() == dst.first()) return;
1763     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1764   }
1765 
1766   // Walk the edges breaking cycles between moves.  The result list
1767   // can be walked in order to produce the proper set of loads
1768   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1769     // Record which moves kill which values
1770     GrowableArray<MoveOperation*> killer;
1771     for (int i = 0; i < edges.length(); i++) {
1772       MoveOperation* s = edges.at(i);
1773       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1774       killer.at_put_grow(s->dst_id(), s, NULL);
1775     }
1776     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1777            "make sure temp isn't in the registers that are killed");
1778 
1779     // create links between loads and stores
1780     for (int i = 0; i < edges.length(); i++) {
1781       edges.at(i)->link(killer);
1782     }
1783 
1784     // at this point, all the move operations are chained together
1785     // in a doubly linked list.  Processing it backwards finds
1786     // the beginning of the chain, forwards finds the end.  If there's
1787     // a cycle it can be broken at any point,  so pick an edge and walk
1788     // backward until the list ends or we end where we started.
1789     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1790     for (int e = 0; e < edges.length(); e++) {
1791       MoveOperation* s = edges.at(e);
1792       if (!s->is_processed()) {
1793         MoveOperation* start = s;
1794         // search for the beginning of the chain or cycle
1795         while (start->prev() != NULL && start->prev() != s) {
1796           start = start->prev();
1797         }
1798         if (start->prev() == s) {
1799           start->break_cycle(temp_register);
1800         }
1801         // walk the chain forward inserting to store list
1802         while (start != NULL) {
1803           stores->append(start);
1804           start->set_processed();
1805           start = start->next();
1806         }
1807       }
1808     }
1809     return stores;
1810   }
1811 };
1812 
1813 static void verify_oop_args(MacroAssembler* masm,
1814                             const methodHandle& method,
1815                             const BasicType* sig_bt,
1816                             const VMRegPair* regs) {
1817   Register temp_reg = rbx;  // not part of any compiled calling seq
1818   if (VerifyOops) {
1819     for (int i = 0; i < method->size_of_parameters(); i++) {
1820       if (is_reference_type(sig_bt[i])) {
1821         VMReg r = regs[i].first();
1822         assert(r->is_valid(), "bad oop arg");
1823         if (r->is_stack()) {
1824           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1825           __ verify_oop(temp_reg);
1826         } else {
1827           __ verify_oop(r->as_Register());
1828         }
1829       }
1830     }
1831   }
1832 }
1833 
1834 static void gen_special_dispatch(MacroAssembler* masm,
1835                                  const methodHandle& method,
1836                                  const BasicType* sig_bt,
1837                                  const VMRegPair* regs) {
1838   verify_oop_args(masm, method, sig_bt, regs);
1839   vmIntrinsics::ID iid = method->intrinsic_id();
1840 
1841   // Now write the args into the outgoing interpreter space
1842   bool     has_receiver   = false;
1843   Register receiver_reg   = noreg;
1844   int      member_arg_pos = -1;
1845   Register member_reg     = noreg;
1846   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1847   if (ref_kind != 0) {
1848     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1849     member_reg = rbx;  // known to be free at this point
1850     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1851   } else if (iid == vmIntrinsics::_invokeBasic) {
1852     has_receiver = true;
1853   } else {
1854     fatal("unexpected intrinsic id %d", iid);
1855   }
1856 
1857   if (member_reg != noreg) {
1858     // Load the member_arg into register, if necessary.
1859     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1860     VMReg r = regs[member_arg_pos].first();
1861     if (r->is_stack()) {
1862       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1863     } else {
1864       // no data motion is needed
1865       member_reg = r->as_Register();
1866     }
1867   }
1868 
1869   if (has_receiver) {
1870     // Make sure the receiver is loaded into a register.
1871     assert(method->size_of_parameters() > 0, "oob");
1872     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1873     VMReg r = regs[0].first();
1874     assert(r->is_valid(), "bad receiver arg");
1875     if (r->is_stack()) {
1876       // Porting note:  This assumes that compiled calling conventions always
1877       // pass the receiver oop in a register.  If this is not true on some
1878       // platform, pick a temp and load the receiver from stack.
1879       fatal("receiver always in a register");
1880       receiver_reg = j_rarg0;  // known to be free at this point
1881       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1882     } else {
1883       // no data motion is needed
1884       receiver_reg = r->as_Register();
1885     }
1886   }
1887 
1888   // Figure out which address we are really jumping to:
1889   MethodHandles::generate_method_handle_dispatch(masm, iid,
1890                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1891 }
1892 
1893 // ---------------------------------------------------------------------------
1894 // Generate a native wrapper for a given method.  The method takes arguments
1895 // in the Java compiled code convention, marshals them to the native
1896 // convention (handlizes oops, etc), transitions to native, makes the call,
1897 // returns to java state (possibly blocking), unhandlizes any result and
1898 // returns.
1899 //
1900 // Critical native functions are a shorthand for the use of
1901 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1902 // functions.  The wrapper is expected to unpack the arguments before
1903 // passing them to the callee and perform checks before and after the
1904 // native call to ensure that they GCLocker
1905 // lock_critical/unlock_critical semantics are followed.  Some other
1906 // parts of JNI setup are skipped like the tear down of the JNI handle
1907 // block and the check for pending exceptions it's impossible for them
1908 // to be thrown.
1909 //
1910 // They are roughly structured like this:
1911 //    if (GCLocker::needs_gc())
1912 //      SharedRuntime::block_for_jni_critical();
1913 //    tranistion to thread_in_native
1914 //    unpack arrray arguments and call native entry point
1915 //    check for safepoint in progress
1916 //    check if any thread suspend flags are set
1917 //      call into JVM and possible unlock the JNI critical
1918 //      if a GC was suppressed while in the critical native.
1919 //    transition back to thread_in_Java
1920 //    return to caller
1921 //
1922 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1923                                                 const methodHandle& method,
1924                                                 int compile_id,
1925                                                 BasicType* in_sig_bt,
1926                                                 VMRegPair* in_regs,
1927                                                 BasicType ret_type,
1928                                                 address critical_entry) {
1929   if (method->is_method_handle_intrinsic()) {
1930     vmIntrinsics::ID iid = method->intrinsic_id();
1931     intptr_t start = (intptr_t)__ pc();
1932     int vep_offset = ((intptr_t)__ pc()) - start;
1933     gen_special_dispatch(masm,
1934                          method,
1935                          in_sig_bt,
1936                          in_regs);
1937     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1938     __ flush();
1939     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1940     return nmethod::new_native_nmethod(method,
1941                                        compile_id,
1942                                        masm->code(),
1943                                        vep_offset,
1944                                        frame_complete,
1945                                        stack_slots / VMRegImpl::slots_per_word,
1946                                        in_ByteSize(-1),
1947                                        in_ByteSize(-1),
1948                                        (OopMapSet*)NULL);
1949   }
1950   bool is_critical_native = true;
1951   address native_func = critical_entry;
1952   if (native_func == NULL) {
1953     native_func = method->native_function();
1954     is_critical_native = false;
1955   }
1956   assert(native_func != NULL, "must have function");
1957 
1958   // An OopMap for lock (and class if static)
1959   OopMapSet *oop_maps = new OopMapSet();
1960   intptr_t start = (intptr_t)__ pc();
1961 
1962   // We have received a description of where all the java arg are located
1963   // on entry to the wrapper. We need to convert these args to where
1964   // the jni function will expect them. To figure out where they go
1965   // we convert the java signature to a C signature by inserting
1966   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1967 
1968   const int total_in_args = method->size_of_parameters();
1969   int total_c_args = total_in_args;
1970   if (!is_critical_native) {
1971     total_c_args += 1;
1972     if (method->is_static()) {
1973       total_c_args++;
1974     }
1975   } else {
1976     for (int i = 0; i < total_in_args; i++) {
1977       if (in_sig_bt[i] == T_ARRAY) {
1978         total_c_args++;
1979       }
1980     }
1981   }
1982 
1983   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1984   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1985   BasicType* in_elem_bt = NULL;
1986 
1987   int argc = 0;
1988   if (!is_critical_native) {
1989     out_sig_bt[argc++] = T_ADDRESS;
1990     if (method->is_static()) {
1991       out_sig_bt[argc++] = T_OBJECT;
1992     }
1993 
1994     for (int i = 0; i < total_in_args ; i++ ) {
1995       out_sig_bt[argc++] = in_sig_bt[i];
1996     }
1997   } else {
1998     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1999     SignatureStream ss(method->signature());
2000     for (int i = 0; i < total_in_args ; i++ ) {
2001       if (in_sig_bt[i] == T_ARRAY) {
2002         // Arrays are passed as int, elem* pair
2003         out_sig_bt[argc++] = T_INT;
2004         out_sig_bt[argc++] = T_ADDRESS;
2005         ss.skip_array_prefix(1);  // skip one '['
2006         assert(ss.is_primitive(), "primitive type expected");
2007         in_elem_bt[i] = ss.type();
2008       } else {
2009         out_sig_bt[argc++] = in_sig_bt[i];
2010         in_elem_bt[i] = T_VOID;
2011       }
2012       if (in_sig_bt[i] != T_VOID) {
2013         assert(in_sig_bt[i] == ss.type() ||
2014                in_sig_bt[i] == T_ARRAY, "must match");
2015         ss.next();
2016       }
2017     }
2018   }
2019 
2020   // Now figure out where the args must be stored and how much stack space
2021   // they require.
2022   int out_arg_slots;
2023   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2024 
2025   // Compute framesize for the wrapper.  We need to handlize all oops in
2026   // incoming registers
2027 
2028   // Calculate the total number of stack slots we will need.
2029 
2030   // First count the abi requirement plus all of the outgoing args
2031   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2032 
2033   // Now the space for the inbound oop handle area
2034   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
2035   if (is_critical_native) {
2036     // Critical natives may have to call out so they need a save area
2037     // for register arguments.
2038     int double_slots = 0;
2039     int single_slots = 0;
2040     for ( int i = 0; i < total_in_args; i++) {
2041       if (in_regs[i].first()->is_Register()) {
2042         const Register reg = in_regs[i].first()->as_Register();
2043         switch (in_sig_bt[i]) {
2044           case T_BOOLEAN:
2045           case T_BYTE:
2046           case T_SHORT:
2047           case T_CHAR:
2048           case T_INT:  single_slots++; break;
2049           case T_ARRAY:  // specific to LP64 (7145024)
2050           case T_LONG: double_slots++; break;
2051           default:  ShouldNotReachHere();
2052         }
2053       } else if (in_regs[i].first()->is_XMMRegister()) {
2054         switch (in_sig_bt[i]) {
2055           case T_FLOAT:  single_slots++; break;
2056           case T_DOUBLE: double_slots++; break;
2057           default:  ShouldNotReachHere();
2058         }
2059       } else if (in_regs[i].first()->is_FloatRegister()) {
2060         ShouldNotReachHere();
2061       }
2062     }
2063     total_save_slots = double_slots * 2 + single_slots;
2064     // align the save area
2065     if (double_slots != 0) {
2066       stack_slots = align_up(stack_slots, 2);
2067     }
2068   }
2069 
2070   int oop_handle_offset = stack_slots;
2071   stack_slots += total_save_slots;
2072 
2073   // Now any space we need for handlizing a klass if static method
2074 
2075   int klass_slot_offset = 0;
2076   int klass_offset = -1;
2077   int lock_slot_offset = 0;
2078   bool is_static = false;
2079 
2080   if (method->is_static()) {
2081     klass_slot_offset = stack_slots;
2082     stack_slots += VMRegImpl::slots_per_word;
2083     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2084     is_static = true;
2085   }
2086 
2087   // Plus a lock if needed
2088 
2089   if (method->is_synchronized()) {
2090     lock_slot_offset = stack_slots;
2091     stack_slots += VMRegImpl::slots_per_word;
2092   }
2093 
2094   // Now a place (+2) to save return values or temp during shuffling
2095   // + 4 for return address (which we own) and saved rbp
2096   stack_slots += 6;
2097 
2098   // Ok The space we have allocated will look like:
2099   //
2100   //
2101   // FP-> |                     |
2102   //      |---------------------|
2103   //      | 2 slots for moves   |
2104   //      |---------------------|
2105   //      | lock box (if sync)  |
2106   //      |---------------------| <- lock_slot_offset
2107   //      | klass (if static)   |
2108   //      |---------------------| <- klass_slot_offset
2109   //      | oopHandle area      |
2110   //      |---------------------| <- oop_handle_offset (6 java arg registers)
2111   //      | outbound memory     |
2112   //      | based arguments     |
2113   //      |                     |
2114   //      |---------------------|
2115   //      |                     |
2116   // SP-> | out_preserved_slots |
2117   //
2118   //
2119 
2120 
2121   // Now compute actual number of stack words we need rounding to make
2122   // stack properly aligned.
2123   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
2124 
2125   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2126 
2127   // First thing make an ic check to see if we should even be here
2128 
2129   // We are free to use all registers as temps without saving them and
2130   // restoring them except rbp. rbp is the only callee save register
2131   // as far as the interpreter and the compiler(s) are concerned.
2132 
2133 
2134   const Register ic_reg = rax;
2135   const Register receiver = j_rarg0;
2136 
2137   Label hit;
2138   Label exception_pending;
2139 
2140   assert_different_registers(ic_reg, receiver, rscratch1);
2141   __ verify_oop(receiver);
2142   __ load_klass(rscratch1, receiver);
2143   __ cmpq(ic_reg, rscratch1);
2144   __ jcc(Assembler::equal, hit);
2145 
2146   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2147 
2148   // Verified entry point must be aligned
2149   __ align(8);
2150 
2151   __ bind(hit);
2152 
2153   int vep_offset = ((intptr_t)__ pc()) - start;
2154 
2155   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
2156     Label L_skip_barrier;
2157     Register klass = r10;
2158     __ mov_metadata(klass, method->method_holder()); // InstanceKlass*
2159     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
2160 
2161     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
2162 
2163     __ bind(L_skip_barrier);
2164   }
2165 
2166 #ifdef COMPILER1
2167   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
2168   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
2169     inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/);
2170   }
2171 #endif // COMPILER1
2172 
2173   // The instruction at the verified entry point must be 5 bytes or longer
2174   // because it can be patched on the fly by make_non_entrant. The stack bang
2175   // instruction fits that requirement.
2176 
2177   // Generate stack overflow check
2178 
2179   if (UseStackBanging) {
2180     __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
2181   } else {
2182     // need a 5 byte instruction to allow MT safe patching to non-entrant
2183     __ fat_nop();
2184   }
2185 
2186   // Generate a new frame for the wrapper.
2187   __ enter();
2188   // -2 because return address is already present and so is saved rbp
2189   __ subptr(rsp, stack_size - 2*wordSize);
2190 
2191   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2192   bs->nmethod_entry_barrier(masm);
2193 
2194   // Frame is now completed as far as size and linkage.
2195   int frame_complete = ((intptr_t)__ pc()) - start;
2196 
2197     if (UseRTMLocking) {
2198       // Abort RTM transaction before calling JNI
2199       // because critical section will be large and will be
2200       // aborted anyway. Also nmethod could be deoptimized.
2201       __ xabort(0);
2202     }
2203 
2204 #ifdef ASSERT
2205     {
2206       Label L;
2207       __ mov(rax, rsp);
2208       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2209       __ cmpptr(rax, rsp);
2210       __ jcc(Assembler::equal, L);
2211       __ stop("improperly aligned stack");
2212       __ bind(L);
2213     }
2214 #endif /* ASSERT */
2215 
2216 
2217   // We use r14 as the oop handle for the receiver/klass
2218   // It is callee save so it survives the call to native
2219 
2220   const Register oop_handle_reg = r14;
2221 
2222   if (is_critical_native && !Universe::heap()->supports_object_pinning()) {
2223     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2224                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2225   }
2226 
2227   //
2228   // We immediately shuffle the arguments so that any vm call we have to
2229   // make from here on out (sync slow path, jvmti, etc.) we will have
2230   // captured the oops from our caller and have a valid oopMap for
2231   // them.
2232 
2233   // -----------------
2234   // The Grand Shuffle
2235 
2236   // The Java calling convention is either equal (linux) or denser (win64) than the
2237   // c calling convention. However the because of the jni_env argument the c calling
2238   // convention always has at least one more (and two for static) arguments than Java.
2239   // Therefore if we move the args from java -> c backwards then we will never have
2240   // a register->register conflict and we don't have to build a dependency graph
2241   // and figure out how to break any cycles.
2242   //
2243 
2244   // Record esp-based slot for receiver on stack for non-static methods
2245   int receiver_offset = -1;
2246 
2247   // This is a trick. We double the stack slots so we can claim
2248   // the oops in the caller's frame. Since we are sure to have
2249   // more args than the caller doubling is enough to make
2250   // sure we can capture all the incoming oop args from the
2251   // caller.
2252   //
2253   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2254 
2255   // Mark location of rbp (someday)
2256   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2257 
2258   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2259   // All inbound args are referenced based on rbp and all outbound args via rsp.
2260 
2261 
2262 #ifdef ASSERT
2263   bool reg_destroyed[RegisterImpl::number_of_registers];
2264   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2265   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2266     reg_destroyed[r] = false;
2267   }
2268   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2269     freg_destroyed[f] = false;
2270   }
2271 
2272 #endif /* ASSERT */
2273 
2274   // This may iterate in two different directions depending on the
2275   // kind of native it is.  The reason is that for regular JNI natives
2276   // the incoming and outgoing registers are offset upwards and for
2277   // critical natives they are offset down.
2278   GrowableArray<int> arg_order(2 * total_in_args);
2279   // Inbound arguments that need to be pinned for critical natives
2280   GrowableArray<int> pinned_args(total_in_args);
2281   // Current stack slot for storing register based array argument
2282   int pinned_slot = oop_handle_offset;
2283 
2284   VMRegPair tmp_vmreg;
2285   tmp_vmreg.set2(rbx->as_VMReg());
2286 
2287   if (!is_critical_native) {
2288     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2289       arg_order.push(i);
2290       arg_order.push(c_arg);
2291     }
2292   } else {
2293     // Compute a valid move order, using tmp_vmreg to break any cycles
2294     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2295   }
2296 
2297   int temploc = -1;
2298   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2299     int i = arg_order.at(ai);
2300     int c_arg = arg_order.at(ai + 1);
2301     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2302     if (c_arg == -1) {
2303       assert(is_critical_native, "should only be required for critical natives");
2304       // This arg needs to be moved to a temporary
2305       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2306       in_regs[i] = tmp_vmreg;
2307       temploc = i;
2308       continue;
2309     } else if (i == -1) {
2310       assert(is_critical_native, "should only be required for critical natives");
2311       // Read from the temporary location
2312       assert(temploc != -1, "must be valid");
2313       i = temploc;
2314       temploc = -1;
2315     }
2316 #ifdef ASSERT
2317     if (in_regs[i].first()->is_Register()) {
2318       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2319     } else if (in_regs[i].first()->is_XMMRegister()) {
2320       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2321     }
2322     if (out_regs[c_arg].first()->is_Register()) {
2323       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2324     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2325       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2326     }
2327 #endif /* ASSERT */
2328     switch (in_sig_bt[i]) {
2329       case T_ARRAY:
2330         if (is_critical_native) {
2331           // pin before unpack
2332           if (Universe::heap()->supports_object_pinning()) {
2333             save_args(masm, total_c_args, 0, out_regs);
2334             gen_pin_object(masm, in_regs[i]);
2335             pinned_args.append(i);
2336             restore_args(masm, total_c_args, 0, out_regs);
2337 
2338             // rax has pinned array
2339             VMRegPair result_reg;
2340             result_reg.set_ptr(rax->as_VMReg());
2341             move_ptr(masm, result_reg, in_regs[i]);
2342             if (!in_regs[i].first()->is_stack()) {
2343               assert(pinned_slot <= stack_slots, "overflow");
2344               move_ptr(masm, result_reg, VMRegImpl::stack2reg(pinned_slot));
2345               pinned_slot += VMRegImpl::slots_per_word;
2346             }
2347           }
2348           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2349           c_arg++;
2350 #ifdef ASSERT
2351           if (out_regs[c_arg].first()->is_Register()) {
2352             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2353           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2354             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2355           }
2356 #endif
2357           break;
2358         }
2359       case T_OBJECT:
2360         assert(!is_critical_native, "no oop arguments");
2361         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2362                     ((i == 0) && (!is_static)),
2363                     &receiver_offset);
2364         break;
2365       case T_VOID:
2366         break;
2367 
2368       case T_FLOAT:
2369         float_move(masm, in_regs[i], out_regs[c_arg]);
2370           break;
2371 
2372       case T_DOUBLE:
2373         assert( i + 1 < total_in_args &&
2374                 in_sig_bt[i + 1] == T_VOID &&
2375                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2376         double_move(masm, in_regs[i], out_regs[c_arg]);
2377         break;
2378 
2379       case T_LONG :
2380         long_move(masm, in_regs[i], out_regs[c_arg]);
2381         break;
2382 
2383       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2384 
2385       default:
2386         move32_64(masm, in_regs[i], out_regs[c_arg]);
2387     }
2388   }
2389 
2390   int c_arg;
2391 
2392   // Pre-load a static method's oop into r14.  Used both by locking code and
2393   // the normal JNI call code.
2394   if (!is_critical_native) {
2395     // point c_arg at the first arg that is already loaded in case we
2396     // need to spill before we call out
2397     c_arg = total_c_args - total_in_args;
2398 
2399     if (method->is_static()) {
2400 
2401       //  load oop into a register
2402       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2403 
2404       // Now handlize the static class mirror it's known not-null.
2405       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2406       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2407 
2408       // Now get the handle
2409       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2410       // store the klass handle as second argument
2411       __ movptr(c_rarg1, oop_handle_reg);
2412       // and protect the arg if we must spill
2413       c_arg--;
2414     }
2415   } else {
2416     // For JNI critical methods we need to save all registers in save_args.
2417     c_arg = 0;
2418   }
2419 
2420   // Change state to native (we save the return address in the thread, since it might not
2421   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2422   // points into the right code segment. It does not have to be the correct return pc.
2423   // We use the same pc/oopMap repeatedly when we call out
2424 
2425   intptr_t the_pc = (intptr_t) __ pc();
2426   oop_maps->add_gc_map(the_pc - start, map);
2427 
2428   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2429 
2430 
2431   // We have all of the arguments setup at this point. We must not touch any register
2432   // argument registers at this point (what if we save/restore them there are no oop?
2433 
2434   {
2435     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2436     // protect the args we've loaded
2437     save_args(masm, total_c_args, c_arg, out_regs);
2438     __ mov_metadata(c_rarg1, method());
2439     __ call_VM_leaf(
2440       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2441       r15_thread, c_rarg1);
2442     restore_args(masm, total_c_args, c_arg, out_regs);
2443   }
2444 
2445   TSAN_RUNTIME_ONLY(
2446     // protect the args we've loaded
2447     save_args(masm, total_c_args, c_arg, out_regs);
2448     __ call_VM(noreg,
2449       CAST_FROM_FN_PTR(address, SharedRuntime::tsan_interp_method_entry),
2450       r15_thread);
2451     restore_args(masm, total_c_args, c_arg, out_regs);
2452   );
2453 
2454   // RedefineClasses() tracing support for obsolete method entry
2455   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2456     // protect the args we've loaded
2457     save_args(masm, total_c_args, c_arg, out_regs);
2458     __ mov_metadata(c_rarg1, method());
2459     __ call_VM_leaf(
2460       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2461       r15_thread, c_rarg1);
2462     restore_args(masm, total_c_args, c_arg, out_regs);
2463   }
2464 
2465   // Lock a synchronized method
2466 
2467   // Register definitions used by locking and unlocking
2468 
2469   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2470   const Register obj_reg  = rbx;  // Will contain the oop
2471   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2472   const Register old_hdr  = r13;  // value of old header at unlock time
2473 
2474   Label slow_path_lock;
2475   Label lock_done;
2476 
2477   if (method->is_synchronized()) {
2478     assert(!is_critical_native, "unhandled");
2479 
2480 
2481     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2482 
2483     // Get the handle (the 2nd argument)
2484     __ mov(oop_handle_reg, c_rarg1);
2485 
2486     // Get address of the box
2487 
2488     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2489 
2490     // Load the oop from the handle
2491     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2492 
2493     __ resolve(IS_NOT_NULL, obj_reg);
2494     if (UseBiasedLocking) {
2495       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2496     }
2497 
2498     // Load immediate 1 into swap_reg %rax
2499     __ movl(swap_reg, 1);
2500 
2501     // Load (object->mark() | 1) into swap_reg %rax
2502     __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2503 
2504     // Save (object->mark() | 1) into BasicLock's displaced header
2505     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2506 
2507     // src -> dest iff dest == rax else rax <- dest
2508     __ lock();
2509     __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2510     __ jcc(Assembler::equal, lock_done);
2511 
2512     // Hmm should this move to the slow path code area???
2513 
2514     // Test if the oopMark is an obvious stack pointer, i.e.,
2515     //  1) (mark & 3) == 0, and
2516     //  2) rsp <= mark < mark + os::pagesize()
2517     // These 3 tests can be done by evaluating the following
2518     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2519     // assuming both stack pointer and pagesize have their
2520     // least significant 2 bits clear.
2521     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2522 
2523     __ subptr(swap_reg, rsp);
2524     __ andptr(swap_reg, 3 - os::vm_page_size());
2525 
2526     // Save the test result, for recursive case, the result is zero
2527     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2528     __ jcc(Assembler::notEqual, slow_path_lock);
2529 
2530     // Slow path will re-enter here
2531 
2532     __ bind(lock_done);
2533 
2534     TSAN_RUNTIME_ONLY(
2535       __ pusha();
2536       __ call_VM(noreg,
2537                  CAST_FROM_FN_PTR(address, SharedRuntime::tsan_oop_lock),
2538                  obj_reg);
2539       __ popa();
2540     );
2541   }
2542 
2543 
2544   // Finally just about ready to make the JNI call
2545 
2546 
2547   // get JNIEnv* which is first argument to native
2548   if (!is_critical_native) {
2549     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2550   }
2551 
2552   // Now set thread in native
2553   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2554 
2555   __ call(RuntimeAddress(native_func));
2556 
2557   // Verify or restore cpu control state after JNI call
2558   __ restore_cpu_control_state_after_jni();
2559 
2560   // Unpack native results.
2561   switch (ret_type) {
2562   case T_BOOLEAN: __ c2bool(rax);            break;
2563   case T_CHAR   : __ movzwl(rax, rax);      break;
2564   case T_BYTE   : __ sign_extend_byte (rax); break;
2565   case T_SHORT  : __ sign_extend_short(rax); break;
2566   case T_INT    : /* nothing to do */        break;
2567   case T_DOUBLE :
2568   case T_FLOAT  :
2569     // Result is in xmm0 we'll save as needed
2570     break;
2571   case T_ARRAY:                 // Really a handle
2572   case T_OBJECT:                // Really a handle
2573       break; // can't de-handlize until after safepoint check
2574   case T_VOID: break;
2575   case T_LONG: break;
2576   default       : ShouldNotReachHere();
2577   }
2578 
2579   // unpin pinned arguments
2580   pinned_slot = oop_handle_offset;
2581   if (pinned_args.length() > 0) {
2582     // save return value that may be overwritten otherwise.
2583     save_native_result(masm, ret_type, stack_slots);
2584     for (int index = 0; index < pinned_args.length(); index ++) {
2585       int i = pinned_args.at(index);
2586       assert(pinned_slot <= stack_slots, "overflow");
2587       if (!in_regs[i].first()->is_stack()) {
2588         int offset = pinned_slot * VMRegImpl::stack_slot_size;
2589         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
2590         pinned_slot += VMRegImpl::slots_per_word;
2591       }
2592       gen_unpin_object(masm, in_regs[i]);
2593     }
2594     restore_native_result(masm, ret_type, stack_slots);
2595   }
2596 
2597   // Switch thread to "native transition" state before reading the synchronization state.
2598   // This additional state is necessary because reading and testing the synchronization
2599   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2600   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2601   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2602   //     Thread A is resumed to finish this native method, but doesn't block here since it
2603   //     didn't see any synchronization is progress, and escapes.
2604   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2605 
2606   // Force this write out before the read below
2607   __ membar(Assembler::Membar_mask_bits(
2608               Assembler::LoadLoad | Assembler::LoadStore |
2609               Assembler::StoreLoad | Assembler::StoreStore));
2610 
2611   Label after_transition;
2612 
2613   // check for safepoint operation in progress and/or pending suspend requests
2614   {
2615     Label Continue;
2616     Label slow_path;
2617 
2618     __ safepoint_poll(slow_path, r15_thread, rscratch1);
2619 
2620     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2621     __ jcc(Assembler::equal, Continue);
2622     __ bind(slow_path);
2623 
2624     // Don't use call_VM as it will see a possible pending exception and forward it
2625     // and never return here preventing us from clearing _last_native_pc down below.
2626     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2627     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2628     // by hand.
2629     //
2630     __ vzeroupper();
2631     save_native_result(masm, ret_type, stack_slots);
2632     __ mov(c_rarg0, r15_thread);
2633     __ mov(r12, rsp); // remember sp
2634     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2635     __ andptr(rsp, -16); // align stack as required by ABI
2636     if (!is_critical_native) {
2637       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2638     } else {
2639       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2640     }
2641     __ mov(rsp, r12); // restore sp
2642     __ reinit_heapbase();
2643     // Restore any method result value
2644     restore_native_result(masm, ret_type, stack_slots);
2645 
2646     if (is_critical_native) {
2647       // The call above performed the transition to thread_in_Java so
2648       // skip the transition logic below.
2649       __ jmpb(after_transition);
2650     }
2651 
2652     __ bind(Continue);
2653   }
2654 
2655   // change thread state
2656   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2657   __ bind(after_transition);
2658 
2659   Label reguard;
2660   Label reguard_done;
2661   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2662   __ jcc(Assembler::equal, reguard);
2663   __ bind(reguard_done);
2664 
2665   // native result if any is live
2666 
2667   // Unlock
2668   Label unlock_done;
2669   Label slow_path_unlock;
2670   if (method->is_synchronized()) {
2671 
2672     // Get locked oop from the handle we passed to jni
2673     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2674     __ resolve(IS_NOT_NULL, obj_reg);
2675 
2676     TSAN_RUNTIME_ONLY(
2677       __ pusha();
2678       __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2679                                          SharedRuntime::tsan_oop_unlock),
2680                  obj_reg);
2681       __ popa();
2682     );
2683 
2684     Label done;
2685 
2686     if (UseBiasedLocking) {
2687       __ biased_locking_exit(obj_reg, old_hdr, done);
2688     }
2689 
2690     // Simple recursive lock?
2691 
2692     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2693     __ jcc(Assembler::equal, done);
2694 
2695     // Must save rax if if it is live now because cmpxchg must use it
2696     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2697       save_native_result(masm, ret_type, stack_slots);
2698     }
2699 
2700 
2701     // get address of the stack lock
2702     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2703     //  get old displaced header
2704     __ movptr(old_hdr, Address(rax, 0));
2705 
2706     // Atomic swap old header if oop still contains the stack lock
2707     __ lock();
2708     __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2709     __ jcc(Assembler::notEqual, slow_path_unlock);
2710 
2711     // slow path re-enters here
2712     __ bind(unlock_done);
2713     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2714       restore_native_result(masm, ret_type, stack_slots);
2715     }
2716 
2717     __ bind(done);
2718 
2719   }
2720 
2721   TSAN_RUNTIME_ONLY(
2722     save_native_result(masm, ret_type, stack_slots);
2723     __ call_VM_leaf(
2724          CAST_FROM_FN_PTR(address, SharedRuntime::tsan_interp_method_exit));
2725     restore_native_result(masm, ret_type, stack_slots);
2726   );
2727 
2728   {
2729     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2730     save_native_result(masm, ret_type, stack_slots);
2731     __ mov_metadata(c_rarg1, method());
2732     __ call_VM_leaf(
2733          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2734          r15_thread, c_rarg1);
2735     restore_native_result(masm, ret_type, stack_slots);
2736   }
2737 
2738   __ reset_last_Java_frame(false);
2739 
2740   // Unbox oop result, e.g. JNIHandles::resolve value.
2741   if (is_reference_type(ret_type)) {
2742     __ resolve_jobject(rax /* value */,
2743                        r15_thread /* thread */,
2744                        rcx /* tmp */);
2745   }
2746 
2747   if (CheckJNICalls) {
2748     // clear_pending_jni_exception_check
2749     __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2750   }
2751 
2752   if (!is_critical_native) {
2753     // reset handle block
2754     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2755     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2756   }
2757 
2758   // pop our frame
2759 
2760   __ leave();
2761 
2762   if (!is_critical_native) {
2763     // Any exception pending?
2764     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2765     __ jcc(Assembler::notEqual, exception_pending);
2766   }
2767 
2768   // Return
2769 
2770   __ ret(0);
2771 
2772   // Unexpected paths are out of line and go here
2773 
2774   if (!is_critical_native) {
2775     // forward the exception
2776     __ bind(exception_pending);
2777 
2778     // and forward the exception
2779     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2780   }
2781 
2782   // Slow path locking & unlocking
2783   if (method->is_synchronized()) {
2784 
2785     // BEGIN Slow path lock
2786     __ bind(slow_path_lock);
2787 
2788     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2789     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2790 
2791     // protect the args we've loaded
2792     save_args(masm, total_c_args, c_arg, out_regs);
2793 
2794     __ mov(c_rarg0, obj_reg);
2795     __ mov(c_rarg1, lock_reg);
2796     __ mov(c_rarg2, r15_thread);
2797 
2798     // Not a leaf but we have last_Java_frame setup as we want
2799     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2800     restore_args(masm, total_c_args, c_arg, out_regs);
2801 
2802 #ifdef ASSERT
2803     { Label L;
2804     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2805     __ jcc(Assembler::equal, L);
2806     __ stop("no pending exception allowed on exit from monitorenter");
2807     __ bind(L);
2808     }
2809 #endif
2810     __ jmp(lock_done);
2811 
2812     // END Slow path lock
2813 
2814     // BEGIN Slow path unlock
2815     __ bind(slow_path_unlock);
2816 
2817     // If we haven't already saved the native result we must save it now as xmm registers
2818     // are still exposed.
2819     __ vzeroupper();
2820     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2821       save_native_result(masm, ret_type, stack_slots);
2822     }
2823 
2824     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2825 
2826     __ mov(c_rarg0, obj_reg);
2827     __ mov(c_rarg2, r15_thread);
2828     __ mov(r12, rsp); // remember sp
2829     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2830     __ andptr(rsp, -16); // align stack as required by ABI
2831 
2832     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2833     // NOTE that obj_reg == rbx currently
2834     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2835     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2836 
2837     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2838     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2839     __ mov(rsp, r12); // restore sp
2840     __ reinit_heapbase();
2841 #ifdef ASSERT
2842     {
2843       Label L;
2844       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2845       __ jcc(Assembler::equal, L);
2846       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2847       __ bind(L);
2848     }
2849 #endif /* ASSERT */
2850 
2851     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2852 
2853     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2854       restore_native_result(masm, ret_type, stack_slots);
2855     }
2856     __ jmp(unlock_done);
2857 
2858     // END Slow path unlock
2859 
2860   } // synchronized
2861 
2862   // SLOW PATH Reguard the stack if needed
2863 
2864   __ bind(reguard);
2865   __ vzeroupper();
2866   save_native_result(masm, ret_type, stack_slots);
2867   __ mov(r12, rsp); // remember sp
2868   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2869   __ andptr(rsp, -16); // align stack as required by ABI
2870   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2871   __ mov(rsp, r12); // restore sp
2872   __ reinit_heapbase();
2873   restore_native_result(masm, ret_type, stack_slots);
2874   // and continue
2875   __ jmp(reguard_done);
2876 
2877 
2878 
2879   __ flush();
2880 
2881   nmethod *nm = nmethod::new_native_nmethod(method,
2882                                             compile_id,
2883                                             masm->code(),
2884                                             vep_offset,
2885                                             frame_complete,
2886                                             stack_slots / VMRegImpl::slots_per_word,
2887                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2888                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2889                                             oop_maps);
2890 
2891   if (is_critical_native) {
2892     nm->set_lazy_critical_native(true);
2893   }
2894 
2895   return nm;
2896 
2897 }
2898 
2899 // this function returns the adjust size (in number of words) to a c2i adapter
2900 // activation for use during deoptimization
2901 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2902   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2903 }
2904 
2905 
2906 uint SharedRuntime::out_preserve_stack_slots() {
2907   return 0;
2908 }
2909 
2910 //------------------------------generate_deopt_blob----------------------------
2911 void SharedRuntime::generate_deopt_blob() {
2912   // Allocate space for the code
2913   ResourceMark rm;
2914   // Setup code generation tools
2915   int pad = 0;
2916 #if INCLUDE_JVMCI
2917   if (EnableJVMCI || UseAOT) {
2918     pad += 512; // Increase the buffer size when compiling for JVMCI
2919   }
2920 #endif
2921   CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
2922   MacroAssembler* masm = new MacroAssembler(&buffer);
2923   int frame_size_in_words;
2924   OopMap* map = NULL;
2925   OopMapSet *oop_maps = new OopMapSet();
2926 
2927   // -------------
2928   // This code enters when returning to a de-optimized nmethod.  A return
2929   // address has been pushed on the the stack, and return values are in
2930   // registers.
2931   // If we are doing a normal deopt then we were called from the patched
2932   // nmethod from the point we returned to the nmethod. So the return
2933   // address on the stack is wrong by NativeCall::instruction_size
2934   // We will adjust the value so it looks like we have the original return
2935   // address on the stack (like when we eagerly deoptimized).
2936   // In the case of an exception pending when deoptimizing, we enter
2937   // with a return address on the stack that points after the call we patched
2938   // into the exception handler. We have the following register state from,
2939   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2940   //    rax: exception oop
2941   //    rbx: exception handler
2942   //    rdx: throwing pc
2943   // So in this case we simply jam rdx into the useless return address and
2944   // the stack looks just like we want.
2945   //
2946   // At this point we need to de-opt.  We save the argument return
2947   // registers.  We call the first C routine, fetch_unroll_info().  This
2948   // routine captures the return values and returns a structure which
2949   // describes the current frame size and the sizes of all replacement frames.
2950   // The current frame is compiled code and may contain many inlined
2951   // functions, each with their own JVM state.  We pop the current frame, then
2952   // push all the new frames.  Then we call the C routine unpack_frames() to
2953   // populate these frames.  Finally unpack_frames() returns us the new target
2954   // address.  Notice that callee-save registers are BLOWN here; they have
2955   // already been captured in the vframeArray at the time the return PC was
2956   // patched.
2957   address start = __ pc();
2958   Label cont;
2959 
2960   // Prolog for non exception case!
2961 
2962   // Save everything in sight.
2963   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2964 
2965   // Normal deoptimization.  Save exec mode for unpack_frames.
2966   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2967   __ jmp(cont);
2968 
2969   int reexecute_offset = __ pc() - start;
2970 #if INCLUDE_JVMCI && !defined(COMPILER1)
2971   if (EnableJVMCI && UseJVMCICompiler) {
2972     // JVMCI does not use this kind of deoptimization
2973     __ should_not_reach_here();
2974   }
2975 #endif
2976 
2977   // Reexecute case
2978   // return address is the pc describes what bci to do re-execute at
2979 
2980   // No need to update map as each call to save_live_registers will produce identical oopmap
2981   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2982 
2983   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2984   __ jmp(cont);
2985 
2986 #if INCLUDE_JVMCI
2987   Label after_fetch_unroll_info_call;
2988   int implicit_exception_uncommon_trap_offset = 0;
2989   int uncommon_trap_offset = 0;
2990 
2991   if (EnableJVMCI || UseAOT) {
2992     implicit_exception_uncommon_trap_offset = __ pc() - start;
2993 
2994     __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2995     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD);
2996 
2997     uncommon_trap_offset = __ pc() - start;
2998 
2999     // Save everything in sight.
3000     RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3001     // fetch_unroll_info needs to call last_java_frame()
3002     __ set_last_Java_frame(noreg, noreg, NULL);
3003 
3004     __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
3005     __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
3006 
3007     __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute);
3008     __ mov(c_rarg0, r15_thread);
3009     __ movl(c_rarg2, r14); // exec mode
3010     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3011     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
3012 
3013     __ reset_last_Java_frame(false);
3014 
3015     __ jmp(after_fetch_unroll_info_call);
3016   } // EnableJVMCI
3017 #endif // INCLUDE_JVMCI
3018 
3019   int exception_offset = __ pc() - start;
3020 
3021   // Prolog for exception case
3022 
3023   // all registers are dead at this entry point, except for rax, and
3024   // rdx which contain the exception oop and exception pc
3025   // respectively.  Set them in TLS and fall thru to the
3026   // unpack_with_exception_in_tls entry point.
3027 
3028   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3029   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
3030 
3031   int exception_in_tls_offset = __ pc() - start;
3032 
3033   // new implementation because exception oop is now passed in JavaThread
3034 
3035   // Prolog for exception case
3036   // All registers must be preserved because they might be used by LinearScan
3037   // Exceptiop oop and throwing PC are passed in JavaThread
3038   // tos: stack at point of call to method that threw the exception (i.e. only
3039   // args are on the stack, no return address)
3040 
3041   // make room on stack for the return address
3042   // It will be patched later with the throwing pc. The correct value is not
3043   // available now because loading it from memory would destroy registers.
3044   __ push(0);
3045 
3046   // Save everything in sight.
3047   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3048 
3049   // Now it is safe to overwrite any register
3050 
3051   // Deopt during an exception.  Save exec mode for unpack_frames.
3052   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
3053 
3054   // load throwing pc from JavaThread and patch it as the return address
3055   // of the current frame. Then clear the field in JavaThread
3056 
3057   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3058   __ movptr(Address(rbp, wordSize), rdx);
3059   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3060 
3061 #ifdef ASSERT
3062   // verify that there is really an exception oop in JavaThread
3063   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3064   __ verify_oop(rax);
3065 
3066   // verify that there is no pending exception
3067   Label no_pending_exception;
3068   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3069   __ testptr(rax, rax);
3070   __ jcc(Assembler::zero, no_pending_exception);
3071   __ stop("must not have pending exception here");
3072   __ bind(no_pending_exception);
3073 #endif
3074 
3075   __ bind(cont);
3076 
3077   // Call C code.  Need thread and this frame, but NOT official VM entry
3078   // crud.  We cannot block on this call, no GC can happen.
3079   //
3080   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
3081 
3082   // fetch_unroll_info needs to call last_java_frame().
3083 
3084   __ set_last_Java_frame(noreg, noreg, NULL);
3085 #ifdef ASSERT
3086   { Label L;
3087     __ cmpptr(Address(r15_thread,
3088                     JavaThread::last_Java_fp_offset()),
3089             (int32_t)0);
3090     __ jcc(Assembler::equal, L);
3091     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
3092     __ bind(L);
3093   }
3094 #endif // ASSERT
3095   __ mov(c_rarg0, r15_thread);
3096   __ movl(c_rarg1, r14); // exec_mode
3097   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3098 
3099   // Need to have an oopmap that tells fetch_unroll_info where to
3100   // find any register it might need.
3101   oop_maps->add_gc_map(__ pc() - start, map);
3102 
3103   __ reset_last_Java_frame(false);
3104 
3105 #if INCLUDE_JVMCI
3106   if (EnableJVMCI || UseAOT) {
3107     __ bind(after_fetch_unroll_info_call);
3108   }
3109 #endif
3110 
3111   // Load UnrollBlock* into rdi
3112   __ mov(rdi, rax);
3113 
3114   __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
3115    Label noException;
3116   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
3117   __ jcc(Assembler::notEqual, noException);
3118   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3119   // QQQ this is useless it was NULL above
3120   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3121   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
3122   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3123 
3124   __ verify_oop(rax);
3125 
3126   // Overwrite the result registers with the exception results.
3127   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3128   // I think this is useless
3129   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
3130 
3131   __ bind(noException);
3132 
3133   // Only register save data is on the stack.
3134   // Now restore the result registers.  Everything else is either dead
3135   // or captured in the vframeArray.
3136   RegisterSaver::restore_result_registers(masm);
3137 
3138   // All of the register save area has been popped of the stack. Only the
3139   // return address remains.
3140 
3141   // Pop all the frames we must move/replace.
3142   //
3143   // Frame picture (youngest to oldest)
3144   // 1: self-frame (no frame link)
3145   // 2: deopting frame  (no frame link)
3146   // 3: caller of deopting frame (could be compiled/interpreted).
3147   //
3148   // Note: by leaving the return address of self-frame on the stack
3149   // and using the size of frame 2 to adjust the stack
3150   // when we are done the return to frame 3 will still be on the stack.
3151 
3152   // Pop deoptimized frame
3153   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3154   __ addptr(rsp, rcx);
3155 
3156   // rsp should be pointing at the return address to the caller (3)
3157 
3158   // Pick up the initial fp we should save
3159   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3160   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3161 
3162 #ifdef ASSERT
3163   // Compilers generate code that bang the stack by as much as the
3164   // interpreter would need. So this stack banging should never
3165   // trigger a fault. Verify that it does not on non product builds.
3166   if (UseStackBanging) {
3167     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3168     __ bang_stack_size(rbx, rcx);
3169   }
3170 #endif
3171 
3172   // Load address of array of frame pcs into rcx
3173   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3174 
3175   // Trash the old pc
3176   __ addptr(rsp, wordSize);
3177 
3178   // Load address of array of frame sizes into rsi
3179   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3180 
3181   // Load counter into rdx
3182   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3183 
3184   // Now adjust the caller's stack to make up for the extra locals
3185   // but record the original sp so that we can save it in the skeletal interpreter
3186   // frame and the stack walking of interpreter_sender will get the unextended sp
3187   // value and not the "real" sp value.
3188 
3189   const Register sender_sp = r8;
3190 
3191   __ mov(sender_sp, rsp);
3192   __ movl(rbx, Address(rdi,
3193                        Deoptimization::UnrollBlock::
3194                        caller_adjustment_offset_in_bytes()));
3195   __ subptr(rsp, rbx);
3196 
3197   // Push interpreter frames in a loop
3198   Label loop;
3199   __ bind(loop);
3200   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3201   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3202   __ pushptr(Address(rcx, 0));          // Save return address
3203   __ enter();                           // Save old & set new ebp
3204   __ subptr(rsp, rbx);                  // Prolog
3205   // This value is corrected by layout_activation_impl
3206   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3207   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3208   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3209   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3210   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3211   __ decrementl(rdx);                   // Decrement counter
3212   __ jcc(Assembler::notZero, loop);
3213   __ pushptr(Address(rcx, 0));          // Save final return address
3214 
3215   // Re-push self-frame
3216   __ enter();                           // Save old & set new ebp
3217 
3218   // Allocate a full sized register save area.
3219   // Return address and rbp are in place, so we allocate two less words.
3220   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3221 
3222   // Restore frame locals after moving the frame
3223   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3224   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3225 
3226   // Call C code.  Need thread but NOT official VM entry
3227   // crud.  We cannot block on this call, no GC can happen.  Call should
3228   // restore return values to their stack-slots with the new SP.
3229   //
3230   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3231 
3232   // Use rbp because the frames look interpreted now
3233   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3234   // Don't need the precise return PC here, just precise enough to point into this code blob.
3235   address the_pc = __ pc();
3236   __ set_last_Java_frame(noreg, rbp, the_pc);
3237 
3238   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3239   __ mov(c_rarg0, r15_thread);
3240   __ movl(c_rarg1, r14); // second arg: exec_mode
3241   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3242   // Revert SP alignment after call since we're going to do some SP relative addressing below
3243   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3244 
3245   // Set an oopmap for the call site
3246   // Use the same PC we used for the last java frame
3247   oop_maps->add_gc_map(the_pc - start,
3248                        new OopMap( frame_size_in_words, 0 ));
3249 
3250   // Clear fp AND pc
3251   __ reset_last_Java_frame(true);
3252 
3253   // Collect return values
3254   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3255   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3256   // I think this is useless (throwing pc?)
3257   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3258 
3259   // Pop self-frame.
3260   __ leave();                           // Epilog
3261 
3262   // Jump to interpreter
3263   __ ret(0);
3264 
3265   // Make sure all code is generated
3266   masm->flush();
3267 
3268   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3269   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3270 #if INCLUDE_JVMCI
3271   if (EnableJVMCI || UseAOT) {
3272     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
3273     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
3274   }
3275 #endif
3276 }
3277 
3278 #ifdef COMPILER2
3279 //------------------------------generate_uncommon_trap_blob--------------------
3280 void SharedRuntime::generate_uncommon_trap_blob() {
3281   // Allocate space for the code
3282   ResourceMark rm;
3283   // Setup code generation tools
3284   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3285   MacroAssembler* masm = new MacroAssembler(&buffer);
3286 
3287   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3288 
3289   address start = __ pc();
3290 
3291   if (UseRTMLocking) {
3292     // Abort RTM transaction before possible nmethod deoptimization.
3293     __ xabort(0);
3294   }
3295 
3296   // Push self-frame.  We get here with a return address on the
3297   // stack, so rsp is 8-byte aligned until we allocate our frame.
3298   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3299 
3300   // No callee saved registers. rbp is assumed implicitly saved
3301   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3302 
3303   // compiler left unloaded_class_index in j_rarg0 move to where the
3304   // runtime expects it.
3305   __ movl(c_rarg1, j_rarg0);
3306 
3307   __ set_last_Java_frame(noreg, noreg, NULL);
3308 
3309   // Call C code.  Need thread but NOT official VM entry
3310   // crud.  We cannot block on this call, no GC can happen.  Call should
3311   // capture callee-saved registers as well as return values.
3312   // Thread is in rdi already.
3313   //
3314   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3315 
3316   __ mov(c_rarg0, r15_thread);
3317   __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
3318   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3319 
3320   // Set an oopmap for the call site
3321   OopMapSet* oop_maps = new OopMapSet();
3322   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3323 
3324   // location of rbp is known implicitly by the frame sender code
3325 
3326   oop_maps->add_gc_map(__ pc() - start, map);
3327 
3328   __ reset_last_Java_frame(false);
3329 
3330   // Load UnrollBlock* into rdi
3331   __ mov(rdi, rax);
3332 
3333 #ifdef ASSERT
3334   { Label L;
3335     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
3336             (int32_t)Deoptimization::Unpack_uncommon_trap);
3337     __ jcc(Assembler::equal, L);
3338     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
3339     __ bind(L);
3340   }
3341 #endif
3342 
3343   // Pop all the frames we must move/replace.
3344   //
3345   // Frame picture (youngest to oldest)
3346   // 1: self-frame (no frame link)
3347   // 2: deopting frame  (no frame link)
3348   // 3: caller of deopting frame (could be compiled/interpreted).
3349 
3350   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3351   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3352 
3353   // Pop deoptimized frame (int)
3354   __ movl(rcx, Address(rdi,
3355                        Deoptimization::UnrollBlock::
3356                        size_of_deoptimized_frame_offset_in_bytes()));
3357   __ addptr(rsp, rcx);
3358 
3359   // rsp should be pointing at the return address to the caller (3)
3360 
3361   // Pick up the initial fp we should save
3362   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3363   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3364 
3365 #ifdef ASSERT
3366   // Compilers generate code that bang the stack by as much as the
3367   // interpreter would need. So this stack banging should never
3368   // trigger a fault. Verify that it does not on non product builds.
3369   if (UseStackBanging) {
3370     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3371     __ bang_stack_size(rbx, rcx);
3372   }
3373 #endif
3374 
3375   // Load address of array of frame pcs into rcx (address*)
3376   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3377 
3378   // Trash the return pc
3379   __ addptr(rsp, wordSize);
3380 
3381   // Load address of array of frame sizes into rsi (intptr_t*)
3382   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3383 
3384   // Counter
3385   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3386 
3387   // Now adjust the caller's stack to make up for the extra locals but
3388   // record the original sp so that we can save it in the skeletal
3389   // interpreter frame and the stack walking of interpreter_sender
3390   // will get the unextended sp value and not the "real" sp value.
3391 
3392   const Register sender_sp = r8;
3393 
3394   __ mov(sender_sp, rsp);
3395   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3396   __ subptr(rsp, rbx);
3397 
3398   // Push interpreter frames in a loop
3399   Label loop;
3400   __ bind(loop);
3401   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3402   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3403   __ pushptr(Address(rcx, 0));     // Save return address
3404   __ enter();                      // Save old & set new rbp
3405   __ subptr(rsp, rbx);             // Prolog
3406   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3407             sender_sp);            // Make it walkable
3408   // This value is corrected by layout_activation_impl
3409   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3410   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3411   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3412   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3413   __ decrementl(rdx);              // Decrement counter
3414   __ jcc(Assembler::notZero, loop);
3415   __ pushptr(Address(rcx, 0));     // Save final return address
3416 
3417   // Re-push self-frame
3418   __ enter();                 // Save old & set new rbp
3419   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3420                               // Prolog
3421 
3422   // Use rbp because the frames look interpreted now
3423   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3424   // Don't need the precise return PC here, just precise enough to point into this code blob.
3425   address the_pc = __ pc();
3426   __ set_last_Java_frame(noreg, rbp, the_pc);
3427 
3428   // Call C code.  Need thread but NOT official VM entry
3429   // crud.  We cannot block on this call, no GC can happen.  Call should
3430   // restore return values to their stack-slots with the new SP.
3431   // Thread is in rdi already.
3432   //
3433   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3434 
3435   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3436   __ mov(c_rarg0, r15_thread);
3437   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3438   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3439 
3440   // Set an oopmap for the call site
3441   // Use the same PC we used for the last java frame
3442   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3443 
3444   // Clear fp AND pc
3445   __ reset_last_Java_frame(true);
3446 
3447   // Pop self-frame.
3448   __ leave();                 // Epilog
3449 
3450   // Jump to interpreter
3451   __ ret(0);
3452 
3453   // Make sure all code is generated
3454   masm->flush();
3455 
3456   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3457                                                  SimpleRuntimeFrame::framesize >> 1);
3458 }
3459 #endif // COMPILER2
3460 
3461 
3462 //------------------------------generate_handler_blob------
3463 //
3464 // Generate a special Compile2Runtime blob that saves all registers,
3465 // and setup oopmap.
3466 //
3467 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3468   assert(StubRoutines::forward_exception_entry() != NULL,
3469          "must be generated before");
3470 
3471   ResourceMark rm;
3472   OopMapSet *oop_maps = new OopMapSet();
3473   OopMap* map;
3474 
3475   // Allocate space for the code.  Setup code generation tools.
3476   CodeBuffer buffer("handler_blob", 2048, 1024);
3477   MacroAssembler* masm = new MacroAssembler(&buffer);
3478 
3479   address start   = __ pc();
3480   address call_pc = NULL;
3481   int frame_size_in_words;
3482   bool cause_return = (poll_type == POLL_AT_RETURN);
3483   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3484 
3485   if (UseRTMLocking) {
3486     // Abort RTM transaction before calling runtime
3487     // because critical section will be large and will be
3488     // aborted anyway. Also nmethod could be deoptimized.
3489     __ xabort(0);
3490   }
3491 
3492   // Make room for return address (or push it again)
3493   if (!cause_return) {
3494     __ push(rbx);
3495   }
3496 
3497   // Save registers, fpu state, and flags
3498   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3499 
3500   // The following is basically a call_VM.  However, we need the precise
3501   // address of the call in order to generate an oopmap. Hence, we do all the
3502   // work outselves.
3503 
3504   __ set_last_Java_frame(noreg, noreg, NULL);
3505 
3506   // The return address must always be correct so that frame constructor never
3507   // sees an invalid pc.
3508 
3509   if (!cause_return) {
3510     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
3511     // Additionally, rbx is a callee saved register and we can look at it later to determine
3512     // if someone changed the return address for us!
3513     __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3514     __ movptr(Address(rbp, wordSize), rbx);
3515   }
3516 
3517   // Do the call
3518   __ mov(c_rarg0, r15_thread);
3519   __ call(RuntimeAddress(call_ptr));
3520 
3521   // Set an oopmap for the call site.  This oopmap will map all
3522   // oop-registers and debug-info registers as callee-saved.  This
3523   // will allow deoptimization at this safepoint to find all possible
3524   // debug-info recordings, as well as let GC find all oops.
3525 
3526   oop_maps->add_gc_map( __ pc() - start, map);
3527 
3528   Label noException;
3529 
3530   __ reset_last_Java_frame(false);
3531 
3532   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3533   __ jcc(Assembler::equal, noException);
3534 
3535   // Exception pending
3536 
3537   RegisterSaver::restore_live_registers(masm, save_vectors);
3538 
3539   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3540 
3541   // No exception case
3542   __ bind(noException);
3543 
3544   Label no_adjust;
3545 #ifdef ASSERT
3546   Label bail;
3547 #endif
3548   if (SafepointMechanism::uses_thread_local_poll() && !cause_return) {
3549     Label no_prefix, not_special;
3550 
3551     // If our stashed return pc was modified by the runtime we avoid touching it
3552     __ cmpptr(rbx, Address(rbp, wordSize));
3553     __ jccb(Assembler::notEqual, no_adjust);
3554 
3555     // Skip over the poll instruction.
3556     // See NativeInstruction::is_safepoint_poll()
3557     // Possible encodings:
3558     //      85 00       test   %eax,(%rax)
3559     //      85 01       test   %eax,(%rcx)
3560     //      85 02       test   %eax,(%rdx)
3561     //      85 03       test   %eax,(%rbx)
3562     //      85 06       test   %eax,(%rsi)
3563     //      85 07       test   %eax,(%rdi)
3564     //
3565     //   41 85 00       test   %eax,(%r8)
3566     //   41 85 01       test   %eax,(%r9)
3567     //   41 85 02       test   %eax,(%r10)
3568     //   41 85 03       test   %eax,(%r11)
3569     //   41 85 06       test   %eax,(%r14)
3570     //   41 85 07       test   %eax,(%r15)
3571     //
3572     //      85 04 24    test   %eax,(%rsp)
3573     //   41 85 04 24    test   %eax,(%r12)
3574     //      85 45 00    test   %eax,0x0(%rbp)
3575     //   41 85 45 00    test   %eax,0x0(%r13)
3576 
3577     __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix);
3578     __ jcc(Assembler::notEqual, no_prefix);
3579     __ addptr(rbx, 1);
3580     __ bind(no_prefix);
3581 #ifdef ASSERT
3582     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
3583 #endif
3584     // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values:
3585     // r12/rsp 0x04
3586     // r13/rbp 0x05
3587     __ movzbq(rcx, Address(rbx, 1));
3588     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
3589     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
3590     __ cmpptr(rcx, 1);
3591     __ jcc(Assembler::above, not_special);
3592     __ addptr(rbx, 1);
3593     __ bind(not_special);
3594 #ifdef ASSERT
3595     // Verify the correct encoding of the poll we're about to skip.
3596     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
3597     __ jcc(Assembler::notEqual, bail);
3598     // Mask out the modrm bits
3599     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
3600     // rax encodes to 0, so if the bits are nonzero it's incorrect
3601     __ jcc(Assembler::notZero, bail);
3602 #endif
3603     // Adjust return pc forward to step over the safepoint poll instruction
3604     __ addptr(rbx, 2);
3605     __ movptr(Address(rbp, wordSize), rbx);
3606   }
3607 
3608   __ bind(no_adjust);
3609   // Normal exit, restore registers and exit.
3610   RegisterSaver::restore_live_registers(masm, save_vectors);
3611   __ ret(0);
3612 
3613 #ifdef ASSERT
3614   __ bind(bail);
3615   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
3616 #endif
3617 
3618   // Make sure all code is generated
3619   masm->flush();
3620 
3621   // Fill-out other meta info
3622   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3623 }
3624 
3625 //
3626 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3627 //
3628 // Generate a stub that calls into vm to find out the proper destination
3629 // of a java call. All the argument registers are live at this point
3630 // but since this is generic code we don't know what they are and the caller
3631 // must do any gc of the args.
3632 //
3633 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3634   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3635 
3636   // allocate space for the code
3637   ResourceMark rm;
3638 
3639   CodeBuffer buffer(name, 1000, 512);
3640   MacroAssembler* masm                = new MacroAssembler(&buffer);
3641 
3642   int frame_size_in_words;
3643 
3644   OopMapSet *oop_maps = new OopMapSet();
3645   OopMap* map = NULL;
3646 
3647   int start = __ offset();
3648 
3649   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3650 
3651   int frame_complete = __ offset();
3652 
3653   __ set_last_Java_frame(noreg, noreg, NULL);
3654 
3655   __ mov(c_rarg0, r15_thread);
3656 
3657   __ call(RuntimeAddress(destination));
3658 
3659 
3660   // Set an oopmap for the call site.
3661   // We need this not only for callee-saved registers, but also for volatile
3662   // registers that the compiler might be keeping live across a safepoint.
3663 
3664   oop_maps->add_gc_map( __ offset() - start, map);
3665 
3666   // rax contains the address we are going to jump to assuming no exception got installed
3667 
3668   // clear last_Java_sp
3669   __ reset_last_Java_frame(false);
3670   // check for pending exceptions
3671   Label pending;
3672   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3673   __ jcc(Assembler::notEqual, pending);
3674 
3675   // get the returned Method*
3676   __ get_vm_result_2(rbx, r15_thread);
3677   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3678 
3679   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3680 
3681   RegisterSaver::restore_live_registers(masm);
3682 
3683   // We are back the the original state on entry and ready to go.
3684 
3685   __ jmp(rax);
3686 
3687   // Pending exception after the safepoint
3688 
3689   __ bind(pending);
3690 
3691   RegisterSaver::restore_live_registers(masm);
3692 
3693   // exception pending => remove activation and forward to exception handler
3694 
3695   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3696 
3697   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3698   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3699 
3700   // -------------
3701   // make sure all code is generated
3702   masm->flush();
3703 
3704   // return the  blob
3705   // frame_size_words or bytes??
3706   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3707 }
3708 
3709 
3710 //------------------------------Montgomery multiplication------------------------
3711 //
3712 
3713 #ifndef _WINDOWS
3714 
3715 #define ASM_SUBTRACT
3716 
3717 #ifdef ASM_SUBTRACT
3718 // Subtract 0:b from carry:a.  Return carry.
3719 static unsigned long
3720 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3721   long i = 0, cnt = len;
3722   unsigned long tmp;
3723   asm volatile("clc; "
3724                "0: ; "
3725                "mov (%[b], %[i], 8), %[tmp]; "
3726                "sbb %[tmp], (%[a], %[i], 8); "
3727                "inc %[i]; dec %[cnt]; "
3728                "jne 0b; "
3729                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3730                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3731                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3732                : "memory");
3733   return tmp;
3734 }
3735 #else // ASM_SUBTRACT
3736 typedef int __attribute__((mode(TI))) int128;
3737 
3738 // Subtract 0:b from carry:a.  Return carry.
3739 static unsigned long
3740 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
3741   int128 tmp = 0;
3742   int i;
3743   for (i = 0; i < len; i++) {
3744     tmp += a[i];
3745     tmp -= b[i];
3746     a[i] = tmp;
3747     tmp >>= 64;
3748     assert(-1 <= tmp && tmp <= 0, "invariant");
3749   }
3750   return tmp + carry;
3751 }
3752 #endif // ! ASM_SUBTRACT
3753 
3754 // Multiply (unsigned) Long A by Long B, accumulating the double-
3755 // length result into the accumulator formed of T0, T1, and T2.
3756 #define MACC(A, B, T0, T1, T2)                                  \
3757 do {                                                            \
3758   unsigned long hi, lo;                                         \
3759   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
3760            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3761            : "r"(A), "a"(B) : "cc");                            \
3762  } while(0)
3763 
3764 // As above, but add twice the double-length result into the
3765 // accumulator.
3766 #define MACC2(A, B, T0, T1, T2)                                 \
3767 do {                                                            \
3768   unsigned long hi, lo;                                         \
3769   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
3770            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
3771            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3772            : "r"(A), "a"(B) : "cc");                            \
3773  } while(0)
3774 
3775 // Fast Montgomery multiplication.  The derivation of the algorithm is
3776 // in  A Cryptographic Library for the Motorola DSP56000,
3777 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
3778 
3779 static void __attribute__((noinline))
3780 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
3781                     unsigned long m[], unsigned long inv, int len) {
3782   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3783   int i;
3784 
3785   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3786 
3787   for (i = 0; i < len; i++) {
3788     int j;
3789     for (j = 0; j < i; j++) {
3790       MACC(a[j], b[i-j], t0, t1, t2);
3791       MACC(m[j], n[i-j], t0, t1, t2);
3792     }
3793     MACC(a[i], b[0], t0, t1, t2);
3794     m[i] = t0 * inv;
3795     MACC(m[i], n[0], t0, t1, t2);
3796 
3797     assert(t0 == 0, "broken Montgomery multiply");
3798 
3799     t0 = t1; t1 = t2; t2 = 0;
3800   }
3801 
3802   for (i = len; i < 2*len; i++) {
3803     int j;
3804     for (j = i-len+1; j < len; j++) {
3805       MACC(a[j], b[i-j], t0, t1, t2);
3806       MACC(m[j], n[i-j], t0, t1, t2);
3807     }
3808     m[i-len] = t0;
3809     t0 = t1; t1 = t2; t2 = 0;
3810   }
3811 
3812   while (t0)
3813     t0 = sub(m, n, t0, len);
3814 }
3815 
3816 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
3817 // multiplies so it should be up to 25% faster than Montgomery
3818 // multiplication.  However, its loop control is more complex and it
3819 // may actually run slower on some machines.
3820 
3821 static void __attribute__((noinline))
3822 montgomery_square(unsigned long a[], unsigned long n[],
3823                   unsigned long m[], unsigned long inv, int len) {
3824   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3825   int i;
3826 
3827   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3828 
3829   for (i = 0; i < len; i++) {
3830     int j;
3831     int end = (i+1)/2;
3832     for (j = 0; j < end; j++) {
3833       MACC2(a[j], a[i-j], t0, t1, t2);
3834       MACC(m[j], n[i-j], t0, t1, t2);
3835     }
3836     if ((i & 1) == 0) {
3837       MACC(a[j], a[j], t0, t1, t2);
3838     }
3839     for (; j < i; j++) {
3840       MACC(m[j], n[i-j], t0, t1, t2);
3841     }
3842     m[i] = t0 * inv;
3843     MACC(m[i], n[0], t0, t1, t2);
3844 
3845     assert(t0 == 0, "broken Montgomery square");
3846 
3847     t0 = t1; t1 = t2; t2 = 0;
3848   }
3849 
3850   for (i = len; i < 2*len; i++) {
3851     int start = i-len+1;
3852     int end = start + (len - start)/2;
3853     int j;
3854     for (j = start; j < end; j++) {
3855       MACC2(a[j], a[i-j], t0, t1, t2);
3856       MACC(m[j], n[i-j], t0, t1, t2);
3857     }
3858     if ((i & 1) == 0) {
3859       MACC(a[j], a[j], t0, t1, t2);
3860     }
3861     for (; j < len; j++) {
3862       MACC(m[j], n[i-j], t0, t1, t2);
3863     }
3864     m[i-len] = t0;
3865     t0 = t1; t1 = t2; t2 = 0;
3866   }
3867 
3868   while (t0)
3869     t0 = sub(m, n, t0, len);
3870 }
3871 
3872 // Swap words in a longword.
3873 static unsigned long swap(unsigned long x) {
3874   return (x << 32) | (x >> 32);
3875 }
3876 
3877 // Copy len longwords from s to d, word-swapping as we go.  The
3878 // destination array is reversed.
3879 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
3880   d += len;
3881   while(len-- > 0) {
3882     d--;
3883     *d = swap(*s);
3884     s++;
3885   }
3886 }
3887 
3888 // The threshold at which squaring is advantageous was determined
3889 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3890 #define MONTGOMERY_SQUARING_THRESHOLD 64
3891 
3892 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3893                                         jint len, jlong inv,
3894                                         jint *m_ints) {
3895   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3896   int longwords = len/2;
3897 
3898   // Make very sure we don't use so much space that the stack might
3899   // overflow.  512 jints corresponds to an 16384-bit integer and
3900   // will use here a total of 8k bytes of stack space.
3901   int total_allocation = longwords * sizeof (unsigned long) * 4;
3902   guarantee(total_allocation <= 8192, "must be");
3903   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3904 
3905   // Local scratch arrays
3906   unsigned long
3907     *a = scratch + 0 * longwords,
3908     *b = scratch + 1 * longwords,
3909     *n = scratch + 2 * longwords,
3910     *m = scratch + 3 * longwords;
3911 
3912   reverse_words((unsigned long *)a_ints, a, longwords);
3913   reverse_words((unsigned long *)b_ints, b, longwords);
3914   reverse_words((unsigned long *)n_ints, n, longwords);
3915 
3916   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
3917 
3918   reverse_words(m, (unsigned long *)m_ints, longwords);
3919 }
3920 
3921 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3922                                       jint len, jlong inv,
3923                                       jint *m_ints) {
3924   assert(len % 2 == 0, "array length in montgomery_square must be even");
3925   int longwords = len/2;
3926 
3927   // Make very sure we don't use so much space that the stack might
3928   // overflow.  512 jints corresponds to an 16384-bit integer and
3929   // will use here a total of 6k bytes of stack space.
3930   int total_allocation = longwords * sizeof (unsigned long) * 3;
3931   guarantee(total_allocation <= 8192, "must be");
3932   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3933 
3934   // Local scratch arrays
3935   unsigned long
3936     *a = scratch + 0 * longwords,
3937     *n = scratch + 1 * longwords,
3938     *m = scratch + 2 * longwords;
3939 
3940   reverse_words((unsigned long *)a_ints, a, longwords);
3941   reverse_words((unsigned long *)n_ints, n, longwords);
3942 
3943   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3944     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
3945   } else {
3946     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
3947   }
3948 
3949   reverse_words(m, (unsigned long *)m_ints, longwords);
3950 }
3951 
3952 #endif // WINDOWS
3953 
3954 #ifdef COMPILER2
3955 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3956 //
3957 //------------------------------generate_exception_blob---------------------------
3958 // creates exception blob at the end
3959 // Using exception blob, this code is jumped from a compiled method.
3960 // (see emit_exception_handler in x86_64.ad file)
3961 //
3962 // Given an exception pc at a call we call into the runtime for the
3963 // handler in this method. This handler might merely restore state
3964 // (i.e. callee save registers) unwind the frame and jump to the
3965 // exception handler for the nmethod if there is no Java level handler
3966 // for the nmethod.
3967 //
3968 // This code is entered with a jmp.
3969 //
3970 // Arguments:
3971 //   rax: exception oop
3972 //   rdx: exception pc
3973 //
3974 // Results:
3975 //   rax: exception oop
3976 //   rdx: exception pc in caller or ???
3977 //   destination: exception handler of caller
3978 //
3979 // Note: the exception pc MUST be at a call (precise debug information)
3980 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3981 //
3982 
3983 void OptoRuntime::generate_exception_blob() {
3984   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3985   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3986   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3987 
3988   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3989 
3990   // Allocate space for the code
3991   ResourceMark rm;
3992   // Setup code generation tools
3993   CodeBuffer buffer("exception_blob", 2048, 1024);
3994   MacroAssembler* masm = new MacroAssembler(&buffer);
3995 
3996 
3997   address start = __ pc();
3998 
3999   // Exception pc is 'return address' for stack walker
4000   __ push(rdx);
4001   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
4002 
4003   // Save callee-saved registers.  See x86_64.ad.
4004 
4005   // rbp is an implicitly saved callee saved register (i.e., the calling
4006   // convention will save/restore it in the prolog/epilog). Other than that
4007   // there are no callee save registers now that adapter frames are gone.
4008 
4009   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
4010 
4011   // Store exception in Thread object. We cannot pass any arguments to the
4012   // handle_exception call, since we do not want to make any assumption
4013   // about the size of the frame where the exception happened in.
4014   // c_rarg0 is either rdi (Linux) or rcx (Windows).
4015   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
4016   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
4017 
4018   // This call does all the hard work.  It checks if an exception handler
4019   // exists in the method.
4020   // If so, it returns the handler address.
4021   // If not, it prepares for stack-unwinding, restoring the callee-save
4022   // registers of the frame being removed.
4023   //
4024   // address OptoRuntime::handle_exception_C(JavaThread* thread)
4025 
4026   // At a method handle call, the stack may not be properly aligned
4027   // when returning with an exception.
4028   address the_pc = __ pc();
4029   __ set_last_Java_frame(noreg, noreg, the_pc);
4030   __ mov(c_rarg0, r15_thread);
4031   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
4032   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
4033 
4034   // Set an oopmap for the call site.  This oopmap will only be used if we
4035   // are unwinding the stack.  Hence, all locations will be dead.
4036   // Callee-saved registers will be the same as the frame above (i.e.,
4037   // handle_exception_stub), since they were restored when we got the
4038   // exception.
4039 
4040   OopMapSet* oop_maps = new OopMapSet();
4041 
4042   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
4043 
4044   __ reset_last_Java_frame(false);
4045 
4046   // Restore callee-saved registers
4047 
4048   // rbp is an implicitly saved callee-saved register (i.e., the calling
4049   // convention will save restore it in prolog/epilog) Other than that
4050   // there are no callee save registers now that adapter frames are gone.
4051 
4052   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
4053 
4054   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
4055   __ pop(rdx);                  // No need for exception pc anymore
4056 
4057   // rax: exception handler
4058 
4059   // We have a handler in rax (could be deopt blob).
4060   __ mov(r8, rax);
4061 
4062   // Get the exception oop
4063   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
4064   // Get the exception pc in case we are deoptimized
4065   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
4066 #ifdef ASSERT
4067   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
4068   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
4069 #endif
4070   // Clear the exception oop so GC no longer processes it as a root.
4071   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
4072 
4073   // rax: exception oop
4074   // r8:  exception handler
4075   // rdx: exception pc
4076   // Jump to handler
4077 
4078   __ jmp(r8);
4079 
4080   // Make sure all code is generated
4081   masm->flush();
4082 
4083   // Set exception blob
4084   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
4085 }
4086 #endif // COMPILER2