1 /*
2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "interp_masm_x86.hpp"
27 #include "interpreter/interpreter.hpp"
28 #include "interpreter/interpreterRuntime.hpp"
29 #include "logging/log.hpp"
30 #include "oops/arrayOop.hpp"
31 #include "oops/markWord.hpp"
32 #include "oops/methodData.hpp"
33 #include "oops/method.hpp"
34 #include "prims/jvmtiExport.hpp"
35 #include "prims/jvmtiThreadState.hpp"
36 #include "runtime/basicLock.hpp"
37 #include "runtime/biasedLocking.hpp"
38 #include "runtime/frame.inline.hpp"
39 #include "runtime/safepointMechanism.hpp"
40 #include "runtime/sharedRuntime.hpp"
41 #include "runtime/thread.inline.hpp"
42 #include "utilities/powerOfTwo.hpp"
43
44 // Implementation of InterpreterMacroAssembler
45
46 void InterpreterMacroAssembler::jump_to_entry(address entry) {
47 assert(entry, "Entry must have been generated by now");
48 jump(RuntimeAddress(entry));
49 }
50
51 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
52 Label update, next, none;
53
54 verify_oop(obj);
55
56 testptr(obj, obj);
57 jccb(Assembler::notZero, update);
58 orptr(mdo_addr, TypeEntries::null_seen);
59 jmpb(next);
60
61 bind(update);
62 load_klass(obj, obj);
63
64 xorptr(obj, mdo_addr);
65 testptr(obj, TypeEntries::type_klass_mask);
66 jccb(Assembler::zero, next); // klass seen before, nothing to
67 // do. The unknown bit may have been
68 // set already but no need to check.
69
70 testptr(obj, TypeEntries::type_unknown);
71 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
72
73 cmpptr(mdo_addr, 0);
74 jccb(Assembler::equal, none);
75 cmpptr(mdo_addr, TypeEntries::null_seen);
76 jccb(Assembler::equal, none);
77 // There is a chance that the checks above (re-reading profiling
78 // data from memory) fail if another thread has just set the
79 // profiling to this obj's klass
80 xorptr(obj, mdo_addr);
81 testptr(obj, TypeEntries::type_klass_mask);
82 jccb(Assembler::zero, next);
83
84 // different than before. Cannot keep accurate profile.
85 orptr(mdo_addr, TypeEntries::type_unknown);
86 jmpb(next);
87
88 bind(none);
89 // first time here. Set profile type.
90 movptr(mdo_addr, obj);
91
92 bind(next);
93 }
94
95 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
96 if (!ProfileInterpreter) {
97 return;
98 }
99
100 if (MethodData::profile_arguments() || MethodData::profile_return()) {
101 Label profile_continue;
102
103 test_method_data_pointer(mdp, profile_continue);
104
105 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
106
107 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
108 jcc(Assembler::notEqual, profile_continue);
109
110 if (MethodData::profile_arguments()) {
111 Label done;
112 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
113 addptr(mdp, off_to_args);
114
115 for (int i = 0; i < TypeProfileArgsLimit; i++) {
116 if (i > 0 || MethodData::profile_return()) {
117 // If return value type is profiled we may have no argument to profile
118 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
119 subl(tmp, i*TypeStackSlotEntries::per_arg_count());
120 cmpl(tmp, TypeStackSlotEntries::per_arg_count());
121 jcc(Assembler::less, done);
122 }
123 movptr(tmp, Address(callee, Method::const_offset()));
124 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
125 // stack offset o (zero based) from the start of the argument
126 // list, for n arguments translates into offset n - o - 1 from
127 // the end of the argument list
128 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
129 subl(tmp, 1);
130 Address arg_addr = argument_address(tmp);
131 movptr(tmp, arg_addr);
132
133 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
134 profile_obj_type(tmp, mdo_arg_addr);
135
136 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
137 addptr(mdp, to_add);
138 off_to_args += to_add;
139 }
140
141 if (MethodData::profile_return()) {
142 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
143 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
144 }
145
146 bind(done);
147
148 if (MethodData::profile_return()) {
149 // We're right after the type profile for the last
150 // argument. tmp is the number of cells left in the
151 // CallTypeData/VirtualCallTypeData to reach its end. Non null
152 // if there's a return to profile.
153 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
154 shll(tmp, exact_log2(DataLayout::cell_size));
155 addptr(mdp, tmp);
156 }
157 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
158 } else {
159 assert(MethodData::profile_return(), "either profile call args or call ret");
160 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
161 }
162
163 // mdp points right after the end of the
164 // CallTypeData/VirtualCallTypeData, right after the cells for the
165 // return value type if there's one
166
167 bind(profile_continue);
168 }
169 }
170
171 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
172 assert_different_registers(mdp, ret, tmp, _bcp_register);
173 if (ProfileInterpreter && MethodData::profile_return()) {
174 Label profile_continue;
175
176 test_method_data_pointer(mdp, profile_continue);
177
178 if (MethodData::profile_return_jsr292_only()) {
179 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
180
181 // If we don't profile all invoke bytecodes we must make sure
182 // it's a bytecode we indeed profile. We can't go back to the
183 // begining of the ProfileData we intend to update to check its
184 // type because we're right after it and we don't known its
185 // length
186 Label do_profile;
187 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
188 jcc(Assembler::equal, do_profile);
189 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
190 jcc(Assembler::equal, do_profile);
191 get_method(tmp);
192 cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
193 jcc(Assembler::notEqual, profile_continue);
194
195 bind(do_profile);
196 }
197
198 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
199 mov(tmp, ret);
200 profile_obj_type(tmp, mdo_ret_addr);
201
202 bind(profile_continue);
203 }
204 }
205
206 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
207 if (ProfileInterpreter && MethodData::profile_parameters()) {
208 Label profile_continue;
209
210 test_method_data_pointer(mdp, profile_continue);
211
212 // Load the offset of the area within the MDO used for
213 // parameters. If it's negative we're not profiling any parameters
214 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
215 testl(tmp1, tmp1);
216 jcc(Assembler::negative, profile_continue);
217
218 // Compute a pointer to the area for parameters from the offset
219 // and move the pointer to the slot for the last
220 // parameters. Collect profiling from last parameter down.
221 // mdo start + parameters offset + array length - 1
222 addptr(mdp, tmp1);
223 movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
224 decrement(tmp1, TypeStackSlotEntries::per_arg_count());
225
226 Label loop;
227 bind(loop);
228
229 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
230 int type_base = in_bytes(ParametersTypeData::type_offset(0));
231 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
232 Address arg_off(mdp, tmp1, per_arg_scale, off_base);
233 Address arg_type(mdp, tmp1, per_arg_scale, type_base);
234
235 // load offset on the stack from the slot for this parameter
236 movptr(tmp2, arg_off);
237 negptr(tmp2);
238 // read the parameter from the local area
239 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
240
241 // profile the parameter
242 profile_obj_type(tmp2, arg_type);
243
244 // go to next parameter
245 decrement(tmp1, TypeStackSlotEntries::per_arg_count());
246 jcc(Assembler::positive, loop);
247
248 bind(profile_continue);
249 }
250 }
251
252 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
253 int number_of_arguments) {
254 // interpreter specific
255 //
256 // Note: No need to save/restore bcp & locals registers
257 // since these are callee saved registers and no blocking/
258 // GC can happen in leaf calls.
259 // Further Note: DO NOT save/restore bcp/locals. If a caller has
260 // already saved them so that it can use rsi/rdi as temporaries
261 // then a save/restore here will DESTROY the copy the caller
262 // saved! There used to be a save_bcp() that only happened in
263 // the ASSERT path (no restore_bcp). Which caused bizarre failures
264 // when jvm built with ASSERTs.
265 #ifdef ASSERT
266 {
267 Label L;
268 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
269 jcc(Assembler::equal, L);
270 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
271 " last_sp != NULL");
272 bind(L);
273 }
274 #endif
275 // super call
276 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
277 // interpreter specific
278 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
279 // but since they may not have been saved (and we don't want to
280 // save them here (see note above) the assert is invalid.
281 }
282
283 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
284 Register java_thread,
285 Register last_java_sp,
286 address entry_point,
287 int number_of_arguments,
288 bool check_exceptions) {
289 // interpreter specific
290 //
291 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
292 // really make a difference for these runtime calls, since they are
293 // slow anyway. Btw., bcp must be saved/restored since it may change
294 // due to GC.
295 NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
296 save_bcp();
297 #ifdef ASSERT
298 {
299 Label L;
300 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
301 jcc(Assembler::equal, L);
302 stop("InterpreterMacroAssembler::call_VM_base:"
303 " last_sp != NULL");
304 bind(L);
305 }
306 #endif /* ASSERT */
307 // super call
308 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
309 entry_point, number_of_arguments,
310 check_exceptions);
311 // interpreter specific
312 restore_bcp();
313 restore_locals();
314 }
315
316 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
317 if (JvmtiExport::can_pop_frame()) {
318 Label L;
319 // Initiate popframe handling only if it is not already being
320 // processed. If the flag has the popframe_processing bit set, it
321 // means that this code is called *during* popframe handling - we
322 // don't want to reenter.
323 // This method is only called just after the call into the vm in
324 // call_VM_base, so the arg registers are available.
325 Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
326 LP64_ONLY(c_rarg0);
327 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
328 testl(pop_cond, JavaThread::popframe_pending_bit);
329 jcc(Assembler::zero, L);
330 testl(pop_cond, JavaThread::popframe_processing_bit);
331 jcc(Assembler::notZero, L);
332 // Call Interpreter::remove_activation_preserving_args_entry() to get the
333 // address of the same-named entrypoint in the generated interpreter code.
334 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
335 jmp(rax);
336 bind(L);
337 NOT_LP64(get_thread(java_thread);)
338 }
339 }
340
341 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
342 Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
343 NOT_LP64(get_thread(thread);)
344 movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
345 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
346 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
347 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
348 #ifdef _LP64
349 switch (state) {
350 case atos: movptr(rax, oop_addr);
351 movptr(oop_addr, (int32_t)NULL_WORD);
352 verify_oop(rax, state); break;
353 case ltos: movptr(rax, val_addr); break;
354 case btos: // fall through
355 case ztos: // fall through
356 case ctos: // fall through
357 case stos: // fall through
358 case itos: movl(rax, val_addr); break;
359 case ftos: load_float(val_addr); break;
360 case dtos: load_double(val_addr); break;
361 case vtos: /* nothing to do */ break;
362 default : ShouldNotReachHere();
363 }
364 // Clean up tos value in the thread object
365 movl(tos_addr, (int) ilgl);
366 movl(val_addr, (int32_t) NULL_WORD);
367 #else
368 const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
369 + in_ByteSize(wordSize));
370 switch (state) {
371 case atos: movptr(rax, oop_addr);
372 movptr(oop_addr, NULL_WORD);
373 verify_oop(rax, state); break;
374 case ltos:
375 movl(rdx, val_addr1); // fall through
376 case btos: // fall through
377 case ztos: // fall through
378 case ctos: // fall through
379 case stos: // fall through
380 case itos: movl(rax, val_addr); break;
381 case ftos: load_float(val_addr); break;
382 case dtos: load_double(val_addr); break;
383 case vtos: /* nothing to do */ break;
384 default : ShouldNotReachHere();
385 }
386 #endif // _LP64
387 // Clean up tos value in the thread object
388 movl(tos_addr, (int32_t) ilgl);
389 movptr(val_addr, NULL_WORD);
390 NOT_LP64(movptr(val_addr1, NULL_WORD);)
391 }
392
393
394 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
395 if (JvmtiExport::can_force_early_return()) {
396 Label L;
397 Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
398 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
399
400 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
401 testptr(tmp, tmp);
402 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
403
404 // Initiate earlyret handling only if it is not already being processed.
405 // If the flag has the earlyret_processing bit set, it means that this code
406 // is called *during* earlyret handling - we don't want to reenter.
407 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
408 cmpl(tmp, JvmtiThreadState::earlyret_pending);
409 jcc(Assembler::notEqual, L);
410
411 // Call Interpreter::remove_activation_early_entry() to get the address of the
412 // same-named entrypoint in the generated interpreter code.
413 NOT_LP64(get_thread(java_thread);)
414 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
415 #ifdef _LP64
416 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
417 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
418 #else
419 pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
420 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
421 #endif // _LP64
422 jmp(rax);
423 bind(L);
424 NOT_LP64(get_thread(java_thread);)
425 }
426 }
427
428 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
429 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
430 load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
431 bswapl(reg);
432 shrl(reg, 16);
433 }
434
435 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
436 int bcp_offset,
437 size_t index_size) {
438 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
439 if (index_size == sizeof(u2)) {
440 load_unsigned_short(index, Address(_bcp_register, bcp_offset));
441 } else if (index_size == sizeof(u4)) {
442 movl(index, Address(_bcp_register, bcp_offset));
443 // Check if the secondary index definition is still ~x, otherwise
444 // we have to change the following assembler code to calculate the
445 // plain index.
446 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
447 notl(index); // convert to plain index
448 } else if (index_size == sizeof(u1)) {
449 load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
450 } else {
451 ShouldNotReachHere();
452 }
453 }
454
455 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
456 Register index,
457 int bcp_offset,
458 size_t index_size) {
459 assert_different_registers(cache, index);
460 get_cache_index_at_bcp(index, bcp_offset, index_size);
461 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
462 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
463 // convert from field index to ConstantPoolCacheEntry index
464 assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
465 shll(index, 2);
466 }
467
468 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
469 Register index,
470 Register bytecode,
471 int byte_no,
472 int bcp_offset,
473 size_t index_size) {
474 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
475 // We use a 32-bit load here since the layout of 64-bit words on
476 // little-endian machines allow us that.
477 movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
478 const int shift_count = (1 + byte_no) * BitsPerByte;
479 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
480 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
481 "correct shift count");
482 shrl(bytecode, shift_count);
483 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
484 andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
485 }
486
487 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
488 Register tmp,
489 int bcp_offset,
490 size_t index_size) {
491 assert_different_registers(cache, tmp);
492
493 get_cache_index_at_bcp(tmp, bcp_offset, index_size);
494 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
495 // convert from field index to ConstantPoolCacheEntry index
496 // and from word offset to byte offset
497 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
498 shll(tmp, 2 + LogBytesPerWord);
499 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
500 // skip past the header
501 addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
502 addptr(cache, tmp); // construct pointer to cache entry
503 }
504
505 // Load object from cpool->resolved_references(index)
506 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
507 Register index,
508 Register tmp) {
509 assert_different_registers(result, index);
510
511 get_constant_pool(result);
512 // load pointer for resolved_references[] objArray
513 movptr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
514 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
515 resolve_oop_handle(result, tmp);
516 load_heap_oop(result, Address(result, index,
517 UseCompressedOops ? Address::times_4 : Address::times_ptr,
518 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
519 }
520
521 // load cpool->resolved_klass_at(index)
522 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
523 Register cpool,
524 Register index) {
525 assert_different_registers(cpool, index);
526
527 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
528 Register resolved_klasses = cpool;
529 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes()));
530 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
531 }
532
533 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no,
534 Register method,
535 Register cache,
536 Register index) {
537 assert_different_registers(cache, index);
538
539 const int method_offset = in_bytes(
540 ConstantPoolCache::base_offset() +
541 ((byte_no == TemplateTable::f2_byte)
542 ? ConstantPoolCacheEntry::f2_offset()
543 : ConstantPoolCacheEntry::f1_offset()));
544
545 movptr(method, Address(cache, index, Address::times_ptr, method_offset)); // get f1 Method*
546 }
547
548 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
549 // subtype of super_klass.
550 //
551 // Args:
552 // rax: superklass
553 // Rsub_klass: subklass
554 //
555 // Kills:
556 // rcx, rdi
557 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
558 Label& ok_is_subtype) {
559 assert(Rsub_klass != rax, "rax holds superklass");
560 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
561 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
562 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
563 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
564
565 // Profile the not-null value's klass.
566 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
567
568 // Do the check.
569 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
570
571 // Profile the failure of the check.
572 profile_typecheck_failed(rcx); // blows rcx
573 }
574
575
576 #ifndef _LP64
577 void InterpreterMacroAssembler::f2ieee() {
578 if (IEEEPrecision) {
579 fstp_s(Address(rsp, 0));
580 fld_s(Address(rsp, 0));
581 }
582 }
583
584
585 void InterpreterMacroAssembler::d2ieee() {
586 if (IEEEPrecision) {
587 fstp_d(Address(rsp, 0));
588 fld_d(Address(rsp, 0));
589 }
590 }
591 #endif // _LP64
592
593 // Java Expression Stack
594
595 void InterpreterMacroAssembler::pop_ptr(Register r) {
596 pop(r);
597 }
598
599 void InterpreterMacroAssembler::push_ptr(Register r) {
600 push(r);
601 }
602
603 void InterpreterMacroAssembler::push_i(Register r) {
604 push(r);
605 }
606
607 void InterpreterMacroAssembler::push_f(XMMRegister r) {
608 subptr(rsp, wordSize);
609 movflt(Address(rsp, 0), r);
610 }
611
612 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
613 movflt(r, Address(rsp, 0));
614 addptr(rsp, wordSize);
615 }
616
617 void InterpreterMacroAssembler::push_d(XMMRegister r) {
618 subptr(rsp, 2 * wordSize);
619 movdbl(Address(rsp, 0), r);
620 }
621
622 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
623 movdbl(r, Address(rsp, 0));
624 addptr(rsp, 2 * Interpreter::stackElementSize);
625 }
626
627 #ifdef _LP64
628 void InterpreterMacroAssembler::pop_i(Register r) {
629 // XXX can't use pop currently, upper half non clean
630 movl(r, Address(rsp, 0));
631 addptr(rsp, wordSize);
632 }
633
634 void InterpreterMacroAssembler::pop_l(Register r) {
635 movq(r, Address(rsp, 0));
636 addptr(rsp, 2 * Interpreter::stackElementSize);
637 }
638
639 void InterpreterMacroAssembler::push_l(Register r) {
640 subptr(rsp, 2 * wordSize);
641 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r );
642 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
643 }
644
645 void InterpreterMacroAssembler::pop(TosState state) {
646 switch (state) {
647 case atos: pop_ptr(); break;
648 case btos:
649 case ztos:
650 case ctos:
651 case stos:
652 case itos: pop_i(); break;
653 case ltos: pop_l(); break;
654 case ftos: pop_f(xmm0); break;
655 case dtos: pop_d(xmm0); break;
656 case vtos: /* nothing to do */ break;
657 default: ShouldNotReachHere();
658 }
659 verify_oop(rax, state);
660 }
661
662 void InterpreterMacroAssembler::push(TosState state) {
663 verify_oop(rax, state);
664 switch (state) {
665 case atos: push_ptr(); break;
666 case btos:
667 case ztos:
668 case ctos:
669 case stos:
670 case itos: push_i(); break;
671 case ltos: push_l(); break;
672 case ftos: push_f(xmm0); break;
673 case dtos: push_d(xmm0); break;
674 case vtos: /* nothing to do */ break;
675 default : ShouldNotReachHere();
676 }
677 }
678 #else
679 void InterpreterMacroAssembler::pop_i(Register r) {
680 pop(r);
681 }
682
683 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
684 pop(lo);
685 pop(hi);
686 }
687
688 void InterpreterMacroAssembler::pop_f() {
689 fld_s(Address(rsp, 0));
690 addptr(rsp, 1 * wordSize);
691 }
692
693 void InterpreterMacroAssembler::pop_d() {
694 fld_d(Address(rsp, 0));
695 addptr(rsp, 2 * wordSize);
696 }
697
698
699 void InterpreterMacroAssembler::pop(TosState state) {
700 switch (state) {
701 case atos: pop_ptr(rax); break;
702 case btos: // fall through
703 case ztos: // fall through
704 case ctos: // fall through
705 case stos: // fall through
706 case itos: pop_i(rax); break;
707 case ltos: pop_l(rax, rdx); break;
708 case ftos:
709 if (UseSSE >= 1) {
710 pop_f(xmm0);
711 } else {
712 pop_f();
713 }
714 break;
715 case dtos:
716 if (UseSSE >= 2) {
717 pop_d(xmm0);
718 } else {
719 pop_d();
720 }
721 break;
722 case vtos: /* nothing to do */ break;
723 default : ShouldNotReachHere();
724 }
725 verify_oop(rax, state);
726 }
727
728
729 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
730 push(hi);
731 push(lo);
732 }
733
734 void InterpreterMacroAssembler::push_f() {
735 // Do not schedule for no AGI! Never write beyond rsp!
736 subptr(rsp, 1 * wordSize);
737 fstp_s(Address(rsp, 0));
738 }
739
740 void InterpreterMacroAssembler::push_d() {
741 // Do not schedule for no AGI! Never write beyond rsp!
742 subptr(rsp, 2 * wordSize);
743 fstp_d(Address(rsp, 0));
744 }
745
746
747 void InterpreterMacroAssembler::push(TosState state) {
748 verify_oop(rax, state);
749 switch (state) {
750 case atos: push_ptr(rax); break;
751 case btos: // fall through
752 case ztos: // fall through
753 case ctos: // fall through
754 case stos: // fall through
755 case itos: push_i(rax); break;
756 case ltos: push_l(rax, rdx); break;
757 case ftos:
758 if (UseSSE >= 1) {
759 push_f(xmm0);
760 } else {
761 push_f();
762 }
763 break;
764 case dtos:
765 if (UseSSE >= 2) {
766 push_d(xmm0);
767 } else {
768 push_d();
769 }
770 break;
771 case vtos: /* nothing to do */ break;
772 default : ShouldNotReachHere();
773 }
774 }
775 #endif // _LP64
776
777
778 // Helpers for swap and dup
779 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
780 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
781 }
782
783 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
784 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
785 }
786
787
788 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
789 // set sender sp
790 lea(_bcp_register, Address(rsp, wordSize));
791 // record last_sp
792 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
793 }
794
795
796 // Jump to from_interpreted entry of a call unless single stepping is possible
797 // in this thread in which case we must call the i2i entry
798 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
799 prepare_to_jump_from_interpreted();
800
801 if (JvmtiExport::can_post_interpreter_events()) {
802 Label run_compiled_code;
803 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
804 // compiled code in threads for which the event is enabled. Check here for
805 // interp_only_mode if these events CAN be enabled.
806 // interp_only is an int, on little endian it is sufficient to test the byte only
807 // Is a cmpl faster?
808 LP64_ONLY(temp = r15_thread;)
809 NOT_LP64(get_thread(temp);)
810 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
811 jccb(Assembler::zero, run_compiled_code);
812 jmp(Address(method, Method::interpreter_entry_offset()));
813 bind(run_compiled_code);
814 }
815
816 jmp(Address(method, Method::from_interpreted_offset()));
817 }
818
819 // The following two routines provide a hook so that an implementation
820 // can schedule the dispatch in two parts. x86 does not do this.
821 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
822 // Nothing x86 specific to be done here
823 }
824
825 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
826 dispatch_next(state, step);
827 }
828
829 void InterpreterMacroAssembler::dispatch_base(TosState state,
830 address* table,
831 bool verifyoop,
832 bool generate_poll) {
833 verify_FPU(1, state);
834 if (VerifyActivationFrameSize) {
835 Label L;
836 mov(rcx, rbp);
837 subptr(rcx, rsp);
838 int32_t min_frame_size =
839 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
840 wordSize;
841 cmpptr(rcx, (int32_t)min_frame_size);
842 jcc(Assembler::greaterEqual, L);
843 stop("broken stack frame");
844 bind(L);
845 }
846 if (verifyoop) {
847 verify_oop(rax, state);
848 }
849
850 address* const safepoint_table = Interpreter::safept_table(state);
851 #ifdef _LP64
852 Label no_safepoint, dispatch;
853 if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) {
854 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
855 testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
856
857 jccb(Assembler::zero, no_safepoint);
858 lea(rscratch1, ExternalAddress((address)safepoint_table));
859 jmpb(dispatch);
860 }
861
862 bind(no_safepoint);
863 lea(rscratch1, ExternalAddress((address)table));
864 bind(dispatch);
865 jmp(Address(rscratch1, rbx, Address::times_8));
866
867 #else
868 Address index(noreg, rbx, Address::times_ptr);
869 if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) {
870 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
871 Label no_safepoint;
872 const Register thread = rcx;
873 get_thread(thread);
874 testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
875
876 jccb(Assembler::zero, no_safepoint);
877 ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index);
878 jump(dispatch_addr);
879 bind(no_safepoint);
880 }
881
882 {
883 ArrayAddress dispatch_addr(ExternalAddress((address)table), index);
884 jump(dispatch_addr);
885 }
886 #endif // _LP64
887 }
888
889 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
890 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
891 }
892
893 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
894 dispatch_base(state, Interpreter::normal_table(state));
895 }
896
897 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
898 dispatch_base(state, Interpreter::normal_table(state), false);
899 }
900
901
902 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
903 // load next bytecode (load before advancing _bcp_register to prevent AGI)
904 load_unsigned_byte(rbx, Address(_bcp_register, step));
905 // advance _bcp_register
906 increment(_bcp_register, step);
907 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
908 }
909
910 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
911 // load current bytecode
912 load_unsigned_byte(rbx, Address(_bcp_register, 0));
913 dispatch_base(state, table);
914 }
915
916 void InterpreterMacroAssembler::narrow(Register result) {
917
918 // Get method->_constMethod->_result_type
919 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
920 movptr(rcx, Address(rcx, Method::const_offset()));
921 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
922
923 Label done, notBool, notByte, notChar;
924
925 // common case first
926 cmpl(rcx, T_INT);
927 jcc(Assembler::equal, done);
928
929 // mask integer result to narrower return type.
930 cmpl(rcx, T_BOOLEAN);
931 jcc(Assembler::notEqual, notBool);
932 andl(result, 0x1);
933 jmp(done);
934
935 bind(notBool);
936 cmpl(rcx, T_BYTE);
937 jcc(Assembler::notEqual, notByte);
938 LP64_ONLY(movsbl(result, result);)
939 NOT_LP64(shll(result, 24);) // truncate upper 24 bits
940 NOT_LP64(sarl(result, 24);) // and sign-extend byte
941 jmp(done);
942
943 bind(notByte);
944 cmpl(rcx, T_CHAR);
945 jcc(Assembler::notEqual, notChar);
946 LP64_ONLY(movzwl(result, result);)
947 NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits
948 jmp(done);
949
950 bind(notChar);
951 // cmpl(rcx, T_SHORT); // all that's left
952 // jcc(Assembler::notEqual, done);
953 LP64_ONLY(movswl(result, result);)
954 NOT_LP64(shll(result, 16);) // truncate upper 16 bits
955 NOT_LP64(sarl(result, 16);) // and sign-extend short
956
957 // Nothing to do for T_INT
958 bind(done);
959 }
960
961 // remove activation
962 //
963 // Unlock the receiver if this is a synchronized method.
964 // Unlock any Java monitors from syncronized blocks.
965 // Remove the activation from the stack.
966 //
967 // If there are locked Java monitors
968 // If throw_monitor_exception
969 // throws IllegalMonitorStateException
970 // Else if install_monitor_exception
971 // installs IllegalMonitorStateException
972 // Else
973 // no error processing
974 void InterpreterMacroAssembler::remove_activation(
975 TosState state,
976 Register ret_addr,
977 bool throw_monitor_exception,
978 bool install_monitor_exception,
979 bool notify_jvmdi) {
980 // Note: Registers rdx xmm0 may be in use for the
981 // result check if synchronized method
982 Label unlocked, unlock, no_unlock;
983
984 const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
985 const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
986 const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
987 // monitor pointers need different register
988 // because rdx may have the result in it
989 NOT_LP64(get_thread(rcx);)
990
991 // get the value of _do_not_unlock_if_synchronized into rdx
992 const Address do_not_unlock_if_synchronized(rthread,
993 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
994 movbool(rbx, do_not_unlock_if_synchronized);
995 movbool(do_not_unlock_if_synchronized, false); // reset the flag
996
997 // get method access flags
998 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
999 movl(rcx, Address(rcx, Method::access_flags_offset()));
1000 testl(rcx, JVM_ACC_SYNCHRONIZED);
1001 jcc(Assembler::zero, unlocked);
1002
1003 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1004 // is set.
1005 testbool(rbx);
1006 jcc(Assembler::notZero, no_unlock);
1007
1008 // unlock monitor
1009 push(state); // save result
1010
1011 // BasicObjectLock will be first in list, since this is a
1012 // synchronized method. However, need to check that the object has
1013 // not been unlocked by an explicit monitorexit bytecode.
1014 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
1015 wordSize - (int) sizeof(BasicObjectLock));
1016 // We use c_rarg1/rdx so that if we go slow path it will be the correct
1017 // register for unlock_object to pass to VM directly
1018 lea(robj, monitor); // address of first monitor
1019
1020 movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
1021 testptr(rax, rax);
1022 jcc(Assembler::notZero, unlock);
1023
1024 pop(state);
1025 if (throw_monitor_exception) {
1026 // Entry already unlocked, need to throw exception
1027 NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow
1028 call_VM(noreg, CAST_FROM_FN_PTR(address,
1029 InterpreterRuntime::throw_illegal_monitor_state_exception));
1030 should_not_reach_here();
1031 } else {
1032 // Monitor already unlocked during a stack unroll. If requested,
1033 // install an illegal_monitor_state_exception. Continue with
1034 // stack unrolling.
1035 if (install_monitor_exception) {
1036 NOT_LP64(empty_FPU_stack();)
1037 call_VM(noreg, CAST_FROM_FN_PTR(address,
1038 InterpreterRuntime::new_illegal_monitor_state_exception));
1039 }
1040 jmp(unlocked);
1041 }
1042
1043 bind(unlock);
1044 unlock_object(robj);
1045 pop(state);
1046
1047 // Check that for block-structured locking (i.e., that all locked
1048 // objects has been unlocked)
1049 bind(unlocked);
1050
1051 // rax, rdx: Might contain return value
1052
1053 // Check that all monitors are unlocked
1054 {
1055 Label loop, exception, entry, restart;
1056 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1057 const Address monitor_block_top(
1058 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1059 const Address monitor_block_bot(
1060 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1061
1062 bind(restart);
1063 // We use c_rarg1 so that if we go slow path it will be the correct
1064 // register for unlock_object to pass to VM directly
1065 movptr(rmon, monitor_block_top); // points to current entry, starting
1066 // with top-most entry
1067 lea(rbx, monitor_block_bot); // points to word before bottom of
1068 // monitor block
1069 jmp(entry);
1070
1071 // Entry already locked, need to throw exception
1072 bind(exception);
1073
1074 if (throw_monitor_exception) {
1075 // Throw exception
1076 NOT_LP64(empty_FPU_stack();)
1077 MacroAssembler::call_VM(noreg,
1078 CAST_FROM_FN_PTR(address, InterpreterRuntime::
1079 throw_illegal_monitor_state_exception));
1080 should_not_reach_here();
1081 } else {
1082 // Stack unrolling. Unlock object and install illegal_monitor_exception.
1083 // Unlock does not block, so don't have to worry about the frame.
1084 // We don't have to preserve c_rarg1 since we are going to throw an exception.
1085
1086 push(state);
1087 mov(robj, rmon); // nop if robj and rmon are the same
1088 unlock_object(robj);
1089 pop(state);
1090
1091 if (install_monitor_exception) {
1092 NOT_LP64(empty_FPU_stack();)
1093 call_VM(noreg, CAST_FROM_FN_PTR(address,
1094 InterpreterRuntime::
1095 new_illegal_monitor_state_exception));
1096 }
1097
1098 jmp(restart);
1099 }
1100
1101 bind(loop);
1102 // check if current entry is used
1103 cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
1104 jcc(Assembler::notEqual, exception);
1105
1106 addptr(rmon, entry_size); // otherwise advance to next entry
1107 bind(entry);
1108 cmpptr(rmon, rbx); // check if bottom reached
1109 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1110 }
1111
1112 bind(no_unlock);
1113
1114 // jvmti support
1115 if (notify_jvmdi) {
1116 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
1117 } else {
1118 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1119 }
1120
1121 // remove activation
1122 // get sender sp
1123 movptr(rbx,
1124 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1125 if (StackReservedPages > 0) {
1126 // testing if reserved zone needs to be re-enabled
1127 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1128 Label no_reserved_zone_enabling;
1129
1130 NOT_LP64(get_thread(rthread);)
1131
1132 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_enabled);
1133 jcc(Assembler::equal, no_reserved_zone_enabling);
1134
1135 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1136 jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1137
1138 call_VM_leaf(
1139 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1140 call_VM(noreg, CAST_FROM_FN_PTR(address,
1141 InterpreterRuntime::throw_delayed_StackOverflowError));
1142 should_not_reach_here();
1143
1144 bind(no_reserved_zone_enabling);
1145 }
1146 leave(); // remove frame anchor
1147 pop(ret_addr); // get return address
1148 mov(rsp, rbx); // set sp to sender sp
1149 }
1150
1151 void InterpreterMacroAssembler::get_method_counters(Register method,
1152 Register mcs, Label& skip) {
1153 Label has_counters;
1154 movptr(mcs, Address(method, Method::method_counters_offset()));
1155 testptr(mcs, mcs);
1156 jcc(Assembler::notZero, has_counters);
1157 call_VM(noreg, CAST_FROM_FN_PTR(address,
1158 InterpreterRuntime::build_method_counters), method);
1159 movptr(mcs, Address(method,Method::method_counters_offset()));
1160 testptr(mcs, mcs);
1161 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1162 bind(has_counters);
1163 }
1164
1165
1166 // Lock object
1167 //
1168 // Args:
1169 // rdx, c_rarg1: BasicObjectLock to be used for locking
1170 //
1171 // Kills:
1172 // rax, rbx
1173 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1174 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1175 "The argument is only for looks. It must be c_rarg1");
1176
1177 if (UseHeavyMonitors) {
1178 call_VM(noreg,
1179 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1180 lock_reg);
1181 } else {
1182 Label done;
1183
1184 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1185 const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a
1186 // problematic case where tmp_reg = no_reg.
1187 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1188
1189 const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1190 const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1191 const int mark_offset = lock_offset +
1192 BasicLock::displaced_header_offset_in_bytes();
1193
1194 Label slow_case;
1195
1196 // Load object pointer into obj_reg
1197 movptr(obj_reg, Address(lock_reg, obj_offset));
1198
1199 if (UseBiasedLocking) {
1200 biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, false, done, &slow_case);
1201 }
1202
1203 // Load immediate 1 into swap_reg %rax
1204 movl(swap_reg, (int32_t)1);
1205
1206 // Load (object->mark() | 1) into swap_reg %rax
1207 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1208
1209 // Save (object->mark() | 1) into BasicLock's displaced header
1210 movptr(Address(lock_reg, mark_offset), swap_reg);
1211
1212 assert(lock_offset == 0,
1213 "displaced header must be first word in BasicObjectLock");
1214
1215 lock();
1216 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1217 if (PrintBiasedLockingStatistics) {
1218 cond_inc32(Assembler::zero,
1219 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1220 }
1221 jcc(Assembler::zero, done);
1222
1223 const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1224
1225 // Test if the oopMark is an obvious stack pointer, i.e.,
1226 // 1) (mark & zero_bits) == 0, and
1227 // 2) rsp <= mark < mark + os::pagesize()
1228 //
1229 // These 3 tests can be done by evaluating the following
1230 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1231 // assuming both stack pointer and pagesize have their
1232 // least significant bits clear.
1233 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1234 subptr(swap_reg, rsp);
1235 andptr(swap_reg, zero_bits - os::vm_page_size());
1236
1237 // Save the test result, for recursive case, the result is zero
1238 movptr(Address(lock_reg, mark_offset), swap_reg);
1239
1240 if (PrintBiasedLockingStatistics) {
1241 cond_inc32(Assembler::zero,
1242 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1243 }
1244 jcc(Assembler::zero, done);
1245
1246 bind(slow_case);
1247
1248 // Call the runtime routine for slow case
1249 call_VM(noreg,
1250 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1251 lock_reg);
1252
1253 bind(done);
1254 }
1255 }
1256
1257
1258 // Unlocks an object. Used in monitorexit bytecode and
1259 // remove_activation. Throws an IllegalMonitorException if object is
1260 // not locked by current thread.
1261 //
1262 // Args:
1263 // rdx, c_rarg1: BasicObjectLock for lock
1264 //
1265 // Kills:
1266 // rax
1267 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1268 // rscratch1 (scratch reg)
1269 // rax, rbx, rcx, rdx
1270 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1271 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1272 "The argument is only for looks. It must be c_rarg1");
1273
1274 if (UseHeavyMonitors) {
1275 call_VM(noreg,
1276 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1277 lock_reg);
1278 } else {
1279 Label done;
1280
1281 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1282 const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark
1283 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1284
1285 save_bcp(); // Save in case of exception
1286
1287 // Convert from BasicObjectLock structure to object and BasicLock
1288 // structure Store the BasicLock address into %rax
1289 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1290
1291 // Load oop into obj_reg(%c_rarg3)
1292 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1293
1294 // Free entry
1295 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
1296
1297 if (UseBiasedLocking) {
1298 biased_locking_exit(obj_reg, header_reg, done);
1299 }
1300
1301 // Load the old header from BasicLock structure
1302 movptr(header_reg, Address(swap_reg,
1303 BasicLock::displaced_header_offset_in_bytes()));
1304
1305 // Test for recursion
1306 testptr(header_reg, header_reg);
1307
1308 // zero for recursive case
1309 jcc(Assembler::zero, done);
1310
1311 // Atomic swap back the old header
1312 lock();
1313 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1314
1315 // zero for simple unlock of a stack-lock case
1316 jcc(Assembler::zero, done);
1317
1318 // Call the runtime routine for slow case.
1319 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
1320 obj_reg); // restore obj
1321 call_VM(noreg,
1322 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1323 lock_reg);
1324
1325 bind(done);
1326
1327 restore_bcp();
1328 }
1329 }
1330
1331 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1332 Label& zero_continue) {
1333 assert(ProfileInterpreter, "must be profiling interpreter");
1334 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1335 testptr(mdp, mdp);
1336 jcc(Assembler::zero, zero_continue);
1337 }
1338
1339
1340 // Set the method data pointer for the current bcp.
1341 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1342 assert(ProfileInterpreter, "must be profiling interpreter");
1343 Label set_mdp;
1344 push(rax);
1345 push(rbx);
1346
1347 get_method(rbx);
1348 // Test MDO to avoid the call if it is NULL.
1349 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1350 testptr(rax, rax);
1351 jcc(Assembler::zero, set_mdp);
1352 // rbx: method
1353 // _bcp_register: bcp
1354 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1355 // rax: mdi
1356 // mdo is guaranteed to be non-zero here, we checked for it before the call.
1357 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1358 addptr(rbx, in_bytes(MethodData::data_offset()));
1359 addptr(rax, rbx);
1360 bind(set_mdp);
1361 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1362 pop(rbx);
1363 pop(rax);
1364 }
1365
1366 void InterpreterMacroAssembler::verify_method_data_pointer() {
1367 assert(ProfileInterpreter, "must be profiling interpreter");
1368 #ifdef ASSERT
1369 Label verify_continue;
1370 push(rax);
1371 push(rbx);
1372 Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1373 Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1374 push(arg3_reg);
1375 push(arg2_reg);
1376 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1377 get_method(rbx);
1378
1379 // If the mdp is valid, it will point to a DataLayout header which is
1380 // consistent with the bcp. The converse is highly probable also.
1381 load_unsigned_short(arg2_reg,
1382 Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1383 addptr(arg2_reg, Address(rbx, Method::const_offset()));
1384 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1385 cmpptr(arg2_reg, _bcp_register);
1386 jcc(Assembler::equal, verify_continue);
1387 // rbx: method
1388 // _bcp_register: bcp
1389 // c_rarg3: mdp
1390 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1391 rbx, _bcp_register, arg3_reg);
1392 bind(verify_continue);
1393 pop(arg2_reg);
1394 pop(arg3_reg);
1395 pop(rbx);
1396 pop(rax);
1397 #endif // ASSERT
1398 }
1399
1400
1401 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1402 int constant,
1403 Register value) {
1404 assert(ProfileInterpreter, "must be profiling interpreter");
1405 Address data(mdp_in, constant);
1406 movptr(data, value);
1407 }
1408
1409
1410 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1411 int constant,
1412 bool decrement) {
1413 // Counter address
1414 Address data(mdp_in, constant);
1415
1416 increment_mdp_data_at(data, decrement);
1417 }
1418
1419 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1420 bool decrement) {
1421 assert(ProfileInterpreter, "must be profiling interpreter");
1422 // %%% this does 64bit counters at best it is wasting space
1423 // at worst it is a rare bug when counters overflow
1424
1425 if (decrement) {
1426 // Decrement the register. Set condition codes.
1427 addptr(data, (int32_t) -DataLayout::counter_increment);
1428 // If the decrement causes the counter to overflow, stay negative
1429 Label L;
1430 jcc(Assembler::negative, L);
1431 addptr(data, (int32_t) DataLayout::counter_increment);
1432 bind(L);
1433 } else {
1434 assert(DataLayout::counter_increment == 1,
1435 "flow-free idiom only works with 1");
1436 // Increment the register. Set carry flag.
1437 addptr(data, DataLayout::counter_increment);
1438 // If the increment causes the counter to overflow, pull back by 1.
1439 sbbptr(data, (int32_t)0);
1440 }
1441 }
1442
1443
1444 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1445 Register reg,
1446 int constant,
1447 bool decrement) {
1448 Address data(mdp_in, reg, Address::times_1, constant);
1449
1450 increment_mdp_data_at(data, decrement);
1451 }
1452
1453 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1454 int flag_byte_constant) {
1455 assert(ProfileInterpreter, "must be profiling interpreter");
1456 int header_offset = in_bytes(DataLayout::flags_offset());
1457 int header_bits = flag_byte_constant;
1458 // Set the flag
1459 orb(Address(mdp_in, header_offset), header_bits);
1460 }
1461
1462
1463
1464 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1465 int offset,
1466 Register value,
1467 Register test_value_out,
1468 Label& not_equal_continue) {
1469 assert(ProfileInterpreter, "must be profiling interpreter");
1470 if (test_value_out == noreg) {
1471 cmpptr(value, Address(mdp_in, offset));
1472 } else {
1473 // Put the test value into a register, so caller can use it:
1474 movptr(test_value_out, Address(mdp_in, offset));
1475 cmpptr(test_value_out, value);
1476 }
1477 jcc(Assembler::notEqual, not_equal_continue);
1478 }
1479
1480
1481 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1482 int offset_of_disp) {
1483 assert(ProfileInterpreter, "must be profiling interpreter");
1484 Address disp_address(mdp_in, offset_of_disp);
1485 addptr(mdp_in, disp_address);
1486 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1487 }
1488
1489
1490 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1491 Register reg,
1492 int offset_of_disp) {
1493 assert(ProfileInterpreter, "must be profiling interpreter");
1494 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1495 addptr(mdp_in, disp_address);
1496 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1497 }
1498
1499
1500 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1501 int constant) {
1502 assert(ProfileInterpreter, "must be profiling interpreter");
1503 addptr(mdp_in, constant);
1504 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1505 }
1506
1507
1508 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1509 assert(ProfileInterpreter, "must be profiling interpreter");
1510 push(return_bci); // save/restore across call_VM
1511 call_VM(noreg,
1512 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1513 return_bci);
1514 pop(return_bci);
1515 }
1516
1517
1518 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1519 Register bumped_count) {
1520 if (ProfileInterpreter) {
1521 Label profile_continue;
1522
1523 // If no method data exists, go to profile_continue.
1524 // Otherwise, assign to mdp
1525 test_method_data_pointer(mdp, profile_continue);
1526
1527 // We are taking a branch. Increment the taken count.
1528 // We inline increment_mdp_data_at to return bumped_count in a register
1529 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1530 Address data(mdp, in_bytes(JumpData::taken_offset()));
1531 movptr(bumped_count, data);
1532 assert(DataLayout::counter_increment == 1,
1533 "flow-free idiom only works with 1");
1534 addptr(bumped_count, DataLayout::counter_increment);
1535 sbbptr(bumped_count, 0);
1536 movptr(data, bumped_count); // Store back out
1537
1538 // The method data pointer needs to be updated to reflect the new target.
1539 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1540 bind(profile_continue);
1541 }
1542 }
1543
1544
1545 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1546 if (ProfileInterpreter) {
1547 Label profile_continue;
1548
1549 // If no method data exists, go to profile_continue.
1550 test_method_data_pointer(mdp, profile_continue);
1551
1552 // We are taking a branch. Increment the not taken count.
1553 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1554
1555 // The method data pointer needs to be updated to correspond to
1556 // the next bytecode
1557 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1558 bind(profile_continue);
1559 }
1560 }
1561
1562 void InterpreterMacroAssembler::profile_call(Register mdp) {
1563 if (ProfileInterpreter) {
1564 Label profile_continue;
1565
1566 // If no method data exists, go to profile_continue.
1567 test_method_data_pointer(mdp, profile_continue);
1568
1569 // We are making a call. Increment the count.
1570 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1571
1572 // The method data pointer needs to be updated to reflect the new target.
1573 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1574 bind(profile_continue);
1575 }
1576 }
1577
1578
1579 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1580 if (ProfileInterpreter) {
1581 Label profile_continue;
1582
1583 // If no method data exists, go to profile_continue.
1584 test_method_data_pointer(mdp, profile_continue);
1585
1586 // We are making a call. Increment the count.
1587 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1588
1589 // The method data pointer needs to be updated to reflect the new target.
1590 update_mdp_by_constant(mdp,
1591 in_bytes(VirtualCallData::
1592 virtual_call_data_size()));
1593 bind(profile_continue);
1594 }
1595 }
1596
1597
1598 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1599 Register mdp,
1600 Register reg2,
1601 bool receiver_can_be_null) {
1602 if (ProfileInterpreter) {
1603 Label profile_continue;
1604
1605 // If no method data exists, go to profile_continue.
1606 test_method_data_pointer(mdp, profile_continue);
1607
1608 Label skip_receiver_profile;
1609 if (receiver_can_be_null) {
1610 Label not_null;
1611 testptr(receiver, receiver);
1612 jccb(Assembler::notZero, not_null);
1613 // We are making a call. Increment the count for null receiver.
1614 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1615 jmp(skip_receiver_profile);
1616 bind(not_null);
1617 }
1618
1619 // Record the receiver type.
1620 record_klass_in_profile(receiver, mdp, reg2, true);
1621 bind(skip_receiver_profile);
1622
1623 // The method data pointer needs to be updated to reflect the new target.
1624 #if INCLUDE_JVMCI
1625 if (MethodProfileWidth == 0) {
1626 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1627 }
1628 #else // INCLUDE_JVMCI
1629 update_mdp_by_constant(mdp,
1630 in_bytes(VirtualCallData::
1631 virtual_call_data_size()));
1632 #endif // INCLUDE_JVMCI
1633 bind(profile_continue);
1634 }
1635 }
1636
1637 #if INCLUDE_JVMCI
1638 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1639 assert_different_registers(method, mdp, reg2);
1640 if (ProfileInterpreter && MethodProfileWidth > 0) {
1641 Label profile_continue;
1642
1643 // If no method data exists, go to profile_continue.
1644 test_method_data_pointer(mdp, profile_continue);
1645
1646 Label done;
1647 record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1648 &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1649 bind(done);
1650
1651 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1652 bind(profile_continue);
1653 }
1654 }
1655 #endif // INCLUDE_JVMCI
1656
1657 // This routine creates a state machine for updating the multi-row
1658 // type profile at a virtual call site (or other type-sensitive bytecode).
1659 // The machine visits each row (of receiver/count) until the receiver type
1660 // is found, or until it runs out of rows. At the same time, it remembers
1661 // the location of the first empty row. (An empty row records null for its
1662 // receiver, and can be allocated for a newly-observed receiver type.)
1663 // Because there are two degrees of freedom in the state, a simple linear
1664 // search will not work; it must be a decision tree. Hence this helper
1665 // function is recursive, to generate the required tree structured code.
1666 // It's the interpreter, so we are trading off code space for speed.
1667 // See below for example code.
1668 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1669 Register receiver, Register mdp,
1670 Register reg2, int start_row,
1671 Label& done, bool is_virtual_call) {
1672 if (TypeProfileWidth == 0) {
1673 if (is_virtual_call) {
1674 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1675 }
1676 #if INCLUDE_JVMCI
1677 else if (EnableJVMCI) {
1678 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1679 }
1680 #endif // INCLUDE_JVMCI
1681 } else {
1682 int non_profiled_offset = -1;
1683 if (is_virtual_call) {
1684 non_profiled_offset = in_bytes(CounterData::count_offset());
1685 }
1686 #if INCLUDE_JVMCI
1687 else if (EnableJVMCI) {
1688 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1689 }
1690 #endif // INCLUDE_JVMCI
1691
1692 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1693 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1694 }
1695 }
1696
1697 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1698 Register reg2, int start_row, Label& done, int total_rows,
1699 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1700 int non_profiled_offset) {
1701 int last_row = total_rows - 1;
1702 assert(start_row <= last_row, "must be work left to do");
1703 // Test this row for both the item and for null.
1704 // Take any of three different outcomes:
1705 // 1. found item => increment count and goto done
1706 // 2. found null => keep looking for case 1, maybe allocate this cell
1707 // 3. found something else => keep looking for cases 1 and 2
1708 // Case 3 is handled by a recursive call.
1709 for (int row = start_row; row <= last_row; row++) {
1710 Label next_test;
1711 bool test_for_null_also = (row == start_row);
1712
1713 // See if the item is item[n].
1714 int item_offset = in_bytes(item_offset_fn(row));
1715 test_mdp_data_at(mdp, item_offset, item,
1716 (test_for_null_also ? reg2 : noreg),
1717 next_test);
1718 // (Reg2 now contains the item from the CallData.)
1719
1720 // The item is item[n]. Increment count[n].
1721 int count_offset = in_bytes(item_count_offset_fn(row));
1722 increment_mdp_data_at(mdp, count_offset);
1723 jmp(done);
1724 bind(next_test);
1725
1726 if (test_for_null_also) {
1727 // Failed the equality check on item[n]... Test for null.
1728 testptr(reg2, reg2);
1729 if (start_row == last_row) {
1730 // The only thing left to do is handle the null case.
1731 if (non_profiled_offset >= 0) {
1732 Label found_null;
1733 jccb(Assembler::zero, found_null);
1734 // Item did not match any saved item and there is no empty row for it.
1735 // Increment total counter to indicate polymorphic case.
1736 increment_mdp_data_at(mdp, non_profiled_offset);
1737 jmp(done);
1738 bind(found_null);
1739 } else {
1740 jcc(Assembler::notZero, done);
1741 }
1742 break;
1743 }
1744 Label found_null;
1745 // Since null is rare, make it be the branch-taken case.
1746 jcc(Assembler::zero, found_null);
1747
1748 // Put all the "Case 3" tests here.
1749 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1750 item_offset_fn, item_count_offset_fn, non_profiled_offset);
1751
1752 // Found a null. Keep searching for a matching item,
1753 // but remember that this is an empty (unused) slot.
1754 bind(found_null);
1755 }
1756 }
1757
1758 // In the fall-through case, we found no matching item, but we
1759 // observed the item[start_row] is NULL.
1760
1761 // Fill in the item field and increment the count.
1762 int item_offset = in_bytes(item_offset_fn(start_row));
1763 set_mdp_data_at(mdp, item_offset, item);
1764 int count_offset = in_bytes(item_count_offset_fn(start_row));
1765 movl(reg2, DataLayout::counter_increment);
1766 set_mdp_data_at(mdp, count_offset, reg2);
1767 if (start_row > 0) {
1768 jmp(done);
1769 }
1770 }
1771
1772 // Example state machine code for three profile rows:
1773 // // main copy of decision tree, rooted at row[1]
1774 // if (row[0].rec == rec) { row[0].incr(); goto done; }
1775 // if (row[0].rec != NULL) {
1776 // // inner copy of decision tree, rooted at row[1]
1777 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1778 // if (row[1].rec != NULL) {
1779 // // degenerate decision tree, rooted at row[2]
1780 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1781 // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1782 // row[2].init(rec); goto done;
1783 // } else {
1784 // // remember row[1] is empty
1785 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1786 // row[1].init(rec); goto done;
1787 // }
1788 // } else {
1789 // // remember row[0] is empty
1790 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1791 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1792 // row[0].init(rec); goto done;
1793 // }
1794 // done:
1795
1796 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1797 Register mdp, Register reg2,
1798 bool is_virtual_call) {
1799 assert(ProfileInterpreter, "must be profiling");
1800 Label done;
1801
1802 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1803
1804 bind (done);
1805 }
1806
1807 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1808 Register mdp) {
1809 if (ProfileInterpreter) {
1810 Label profile_continue;
1811 uint row;
1812
1813 // If no method data exists, go to profile_continue.
1814 test_method_data_pointer(mdp, profile_continue);
1815
1816 // Update the total ret count.
1817 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1818
1819 for (row = 0; row < RetData::row_limit(); row++) {
1820 Label next_test;
1821
1822 // See if return_bci is equal to bci[n]:
1823 test_mdp_data_at(mdp,
1824 in_bytes(RetData::bci_offset(row)),
1825 return_bci, noreg,
1826 next_test);
1827
1828 // return_bci is equal to bci[n]. Increment the count.
1829 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1830
1831 // The method data pointer needs to be updated to reflect the new target.
1832 update_mdp_by_offset(mdp,
1833 in_bytes(RetData::bci_displacement_offset(row)));
1834 jmp(profile_continue);
1835 bind(next_test);
1836 }
1837
1838 update_mdp_for_ret(return_bci);
1839
1840 bind(profile_continue);
1841 }
1842 }
1843
1844
1845 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1846 if (ProfileInterpreter) {
1847 Label profile_continue;
1848
1849 // If no method data exists, go to profile_continue.
1850 test_method_data_pointer(mdp, profile_continue);
1851
1852 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1853
1854 // The method data pointer needs to be updated.
1855 int mdp_delta = in_bytes(BitData::bit_data_size());
1856 if (TypeProfileCasts) {
1857 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1858 }
1859 update_mdp_by_constant(mdp, mdp_delta);
1860
1861 bind(profile_continue);
1862 }
1863 }
1864
1865
1866 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1867 if (ProfileInterpreter && TypeProfileCasts) {
1868 Label profile_continue;
1869
1870 // If no method data exists, go to profile_continue.
1871 test_method_data_pointer(mdp, profile_continue);
1872
1873 int count_offset = in_bytes(CounterData::count_offset());
1874 // Back up the address, since we have already bumped the mdp.
1875 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1876
1877 // *Decrement* the counter. We expect to see zero or small negatives.
1878 increment_mdp_data_at(mdp, count_offset, true);
1879
1880 bind (profile_continue);
1881 }
1882 }
1883
1884
1885 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1886 if (ProfileInterpreter) {
1887 Label profile_continue;
1888
1889 // If no method data exists, go to profile_continue.
1890 test_method_data_pointer(mdp, profile_continue);
1891
1892 // The method data pointer needs to be updated.
1893 int mdp_delta = in_bytes(BitData::bit_data_size());
1894 if (TypeProfileCasts) {
1895 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1896
1897 // Record the object type.
1898 record_klass_in_profile(klass, mdp, reg2, false);
1899 NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1900 NOT_LP64(restore_locals();) // Restore EDI
1901 }
1902 update_mdp_by_constant(mdp, mdp_delta);
1903
1904 bind(profile_continue);
1905 }
1906 }
1907
1908
1909 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1910 if (ProfileInterpreter) {
1911 Label profile_continue;
1912
1913 // If no method data exists, go to profile_continue.
1914 test_method_data_pointer(mdp, profile_continue);
1915
1916 // Update the default case count
1917 increment_mdp_data_at(mdp,
1918 in_bytes(MultiBranchData::default_count_offset()));
1919
1920 // The method data pointer needs to be updated.
1921 update_mdp_by_offset(mdp,
1922 in_bytes(MultiBranchData::
1923 default_displacement_offset()));
1924
1925 bind(profile_continue);
1926 }
1927 }
1928
1929
1930 void InterpreterMacroAssembler::profile_switch_case(Register index,
1931 Register mdp,
1932 Register reg2) {
1933 if (ProfileInterpreter) {
1934 Label profile_continue;
1935
1936 // If no method data exists, go to profile_continue.
1937 test_method_data_pointer(mdp, profile_continue);
1938
1939 // Build the base (index * per_case_size_in_bytes()) +
1940 // case_array_offset_in_bytes()
1941 movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1942 imulptr(index, reg2); // XXX l ?
1943 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1944
1945 // Update the case count
1946 increment_mdp_data_at(mdp,
1947 index,
1948 in_bytes(MultiBranchData::relative_count_offset()));
1949
1950 // The method data pointer needs to be updated.
1951 update_mdp_by_offset(mdp,
1952 index,
1953 in_bytes(MultiBranchData::
1954 relative_displacement_offset()));
1955
1956 bind(profile_continue);
1957 }
1958 }
1959
1960
1961
1962 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1963 if (state == atos) {
1964 MacroAssembler::verify_oop(reg);
1965 }
1966 }
1967
1968 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1969 #ifndef _LP64
1970 if ((state == ftos && UseSSE < 1) ||
1971 (state == dtos && UseSSE < 2)) {
1972 MacroAssembler::verify_FPU(stack_depth);
1973 }
1974 #endif
1975 }
1976
1977 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1978 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1979 int increment, Address mask,
1980 Register scratch, bool preloaded,
1981 Condition cond, Label* where) {
1982 if (!preloaded) {
1983 movl(scratch, counter_addr);
1984 }
1985 incrementl(scratch, increment);
1986 movl(counter_addr, scratch);
1987 andl(scratch, mask);
1988 if (where != NULL) {
1989 jcc(cond, *where);
1990 }
1991 }
1992
1993 void InterpreterMacroAssembler::notify_method_entry() {
1994 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1995 // track stack depth. If it is possible to enter interp_only_mode we add
1996 // the code to check if the event should be sent.
1997 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1998 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1999 if (JvmtiExport::can_post_interpreter_events()) {
2000 Label L;
2001 NOT_LP64(get_thread(rthread);)
2002 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2003 testl(rdx, rdx);
2004 jcc(Assembler::zero, L);
2005 call_VM(noreg, CAST_FROM_FN_PTR(address,
2006 InterpreterRuntime::post_method_entry));
2007 bind(L);
2008 }
2009
2010 {
2011 SkipIfEqual skip(this, &DTraceMethodProbes, false);
2012 NOT_LP64(get_thread(rthread);)
2013 get_method(rarg);
2014 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2015 rthread, rarg);
2016 }
2017
2018 // RedefineClasses() tracing support for obsolete method entry
2019 if (log_is_enabled(Trace, redefine, class, obsolete)) {
2020 NOT_LP64(get_thread(rthread);)
2021 get_method(rarg);
2022 call_VM_leaf(
2023 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2024 rthread, rarg);
2025 }
2026 }
2027
2028
2029 void InterpreterMacroAssembler::notify_method_exit(
2030 TosState state, NotifyMethodExitMode mode) {
2031 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2032 // track stack depth. If it is possible to enter interp_only_mode we add
2033 // the code to check if the event should be sent.
2034 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2035 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2036 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2037 Label L;
2038 // Note: frame::interpreter_frame_result has a dependency on how the
2039 // method result is saved across the call to post_method_exit. If this
2040 // is changed then the interpreter_frame_result implementation will
2041 // need to be updated too.
2042
2043 // template interpreter will leave the result on the top of the stack.
2044 push(state);
2045 NOT_LP64(get_thread(rthread);)
2046 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2047 testl(rdx, rdx);
2048 jcc(Assembler::zero, L);
2049 call_VM(noreg,
2050 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2051 bind(L);
2052 pop(state);
2053 }
2054
2055 {
2056 SkipIfEqual skip(this, &DTraceMethodProbes, false);
2057 push(state);
2058 NOT_LP64(get_thread(rthread);)
2059 get_method(rarg);
2060 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2061 rthread, rarg);
2062 pop(state);
2063 }
2064 }