1 /*
2 * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 #ifndef HEADLESS
27
28 #include "MTLPaints.h"
29
30 #include "MTLClip.h"
31
32 #include "common.h"
33
34 #include "sun_java2d_SunGraphics2D.h"
35 #include "sun_java2d_pipe_BufferedPaints.h"
36 #import "MTLComposite.h"
37
38 #define RGBA_TO_V4(c) \
39 { \
40 (((c) >> 16) & (0xFF))/255.0f, \
41 (((c) >> 8) & 0xFF)/255.0f, \
42 ((c) & 0xFF)/255.0f, \
43 (((c) >> 24) & 0xFF)/255.0f \
44 }
45
46 static MTLRenderPipelineDescriptor * templateRenderPipelineDesc = nil;
47 static MTLRenderPipelineDescriptor * templateTexturePipelineDesc = nil;
48 static MTLRenderPipelineDescriptor * templateAATexturePipelineDesc = nil;
49
50 static void initTemplatePipelineDescriptors() {
51 if (templateRenderPipelineDesc != nil && templateTexturePipelineDesc != nil)
52 return;
53
54 MTLVertexDescriptor *vertDesc = [[MTLVertexDescriptor new] autorelease];
55 vertDesc.attributes[VertexAttributePosition].format = MTLVertexFormatFloat2;
56 vertDesc.attributes[VertexAttributePosition].offset = 0;
57 vertDesc.attributes[VertexAttributePosition].bufferIndex = MeshVertexBuffer;
58 vertDesc.layouts[MeshVertexBuffer].stride = sizeof(struct Vertex);
59 vertDesc.layouts[MeshVertexBuffer].stepRate = 1;
60 vertDesc.layouts[MeshVertexBuffer].stepFunction = MTLVertexStepFunctionPerVertex;
61
62 templateRenderPipelineDesc = [[MTLRenderPipelineDescriptor new] autorelease];
63 templateRenderPipelineDesc.sampleCount = 1;
64 templateRenderPipelineDesc.vertexDescriptor = vertDesc;
65 templateRenderPipelineDesc.colorAttachments[0].pixelFormat = MTLPixelFormatBGRA8Unorm;
66 templateRenderPipelineDesc.label = @"template_render";
67
68 templateTexturePipelineDesc = [[templateRenderPipelineDesc copy] autorelease];
69 templateTexturePipelineDesc.vertexDescriptor.attributes[VertexAttributeTexPos].format = MTLVertexFormatFloat2;
70 templateTexturePipelineDesc.vertexDescriptor.attributes[VertexAttributeTexPos].offset = 2*sizeof(float);
71 templateTexturePipelineDesc.vertexDescriptor.attributes[VertexAttributeTexPos].bufferIndex = MeshVertexBuffer;
72 templateTexturePipelineDesc.vertexDescriptor.layouts[MeshVertexBuffer].stride = sizeof(struct TxtVertex);
73 templateTexturePipelineDesc.vertexDescriptor.layouts[MeshVertexBuffer].stepRate = 1;
74 templateTexturePipelineDesc.vertexDescriptor.layouts[MeshVertexBuffer].stepFunction = MTLVertexStepFunctionPerVertex;
75 templateTexturePipelineDesc.label = @"template_texture";
76
77 templateAATexturePipelineDesc = [[templateTexturePipelineDesc copy] autorelease];
78 templateAATexturePipelineDesc.colorAttachments[0].sourceRGBBlendFactor = MTLBlendFactorOne;
79 templateAATexturePipelineDesc.colorAttachments[0].sourceAlphaBlendFactor = MTLBlendFactorOne;
80 templateAATexturePipelineDesc.colorAttachments[0].destinationRGBBlendFactor = MTLBlendFactorOneMinusSourceAlpha;
81 templateAATexturePipelineDesc.colorAttachments[0].destinationAlphaBlendFactor = MTLBlendFactorOneMinusSourceAlpha;
82 templateAATexturePipelineDesc.label = @"template_aa_texture";
83
84 }
85
86 @implementation MTLPaint {
87 // TODO: remove paintState, split into heirarchy of Paint-objects (i.e. PaintColor, PaintGrad, e.t.c)
88 jint _paintState;
89
90 // color-mode
91 jint _color;
92
93 // lin-grad-mode
94 jdouble _p0;
95 jdouble _p1;
96 jdouble _p3;
97 jboolean _cyclic;
98 jint _pixel1;
99 jint _pixel2;
100 jboolean _useMask;
101
102 // texture paint
103 id<MTLTexture> _paintTexture;
104 struct AnchorData _anchor;
105 }
106
107 - (id)init {
108 self = [super init];
109 if (self) {
110 _paintState = sun_java2d_SunGraphics2D_PAINT_UNDEFINED;
111 }
112 return self;
113 }
114
115 - (BOOL)isEqual:(MTLPaint *)other {
116 if (self == other)
117 return YES;
118 if (_paintState == sun_java2d_SunGraphics2D_PAINT_UNDEFINED)
119 return _paintState == other->_paintState;
120 if (_paintState != other->_paintState)
121 return NO;
122 if (_paintState == sun_java2d_SunGraphics2D_PAINT_GRADIENT) {
123 return _p0 == other->_p0
124 && _p1 == other->_p1
125 && _p3 == other->_p3
126 && _pixel1 == other->_pixel1
127 && _pixel2 == other->_pixel2;
128 }
129 if (_paintState == sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR) {
130 return _color == other->_color;
131 }
132 if (_paintState == sun_java2d_SunGraphics2D_PAINT_TEXTURE) {
133 return _paintTexture == other->_paintTexture
134 && _anchor.xParams[0] == other->_anchor.xParams[0]
135 && _anchor.xParams[1] == other->_anchor.xParams[1]
136 && _anchor.xParams[2] == other->_anchor.xParams[2]
137 && _anchor.yParams[0] == other->_anchor.yParams[0]
138 && _anchor.yParams[1] == other->_anchor.yParams[1]
139 && _anchor.yParams[2] == other->_anchor.yParams[2];
140 }
141
142 J2dTraceLn1(J2D_TRACE_ERROR, "Unimplemented paint mode %d", _paintState);
143 return NO;
144 }
145
146 - (void)copyFrom:(MTLPaint *)other {
147 _paintState = other->_paintState;
148 if (other->_paintState == sun_java2d_SunGraphics2D_PAINT_UNDEFINED)
149 return;
150
151 if (other->_paintState == sun_java2d_SunGraphics2D_PAINT_GRADIENT) {
152 _p0 = other->_p0;
153 _p1 = other->_p1;
154 _p3 = other->_p3;
155 _pixel1 = other->_pixel1;
156 _pixel2 = other->_pixel2;
157 return;
158 }
159 if (_paintState == sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR) {
160 _color = other->_color;
161 return;
162 }
163
164 if (_paintState == sun_java2d_SunGraphics2D_PAINT_TEXTURE) {
165 _color = other->_color;
166 _paintTexture = other->_paintTexture;
167 _anchor = other->_anchor;
168 return;
169 }
170
171 J2dTraceLn1(J2D_TRACE_ERROR, "Unsupported paint mode %d", _paintState);
172 }
173
174 - (NSString *)getDescription {
175 if (_paintState == sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR) {
176 return [NSString stringWithFormat:@"[r=%d g=%d b=%d a=%d]", (_color >> 16) & (0xFF), (_color >> 8) & 0xFF, (_color) & 0xFF, (_color >> 24) & 0xFF];
177 }
178
179 if (_paintState == sun_java2d_SunGraphics2D_PAINT_GRADIENT) {
180 return [NSString stringWithFormat:@"gradient"];
181 }
182
183 if (_paintState == sun_java2d_SunGraphics2D_PAINT_TEXTURE) {
184 return [NSString stringWithFormat:@"texture_paint"];
185 }
186
187 return @"unknown-paint";
188 }
189
190 - (jint)getColor {
191 return _color;
192 }
193
194 - (void)reset {
195 _paintState = sun_java2d_SunGraphics2D_PAINT_UNDEFINED;
196 _paintTexture = nil;
197 _anchor.xParams[0] = _anchor.xParams[1] = _anchor.xParams[2] = 0.0f;
198 _anchor.yParams[0] = _anchor.yParams[1] = _anchor.yParams[2] = 0.0f;
199 }
200
201 - (void)setColor:(jint)pixelColor {
202 _paintState = sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR;
203 _color = pixelColor;
204 }
205
206 - (void)setGradientUseMask:(jboolean)useMask
207 cyclic:(jboolean)cyclic
208 p0:(jdouble)p0
209 p1:(jdouble)p1
210 p3:(jdouble)p3
211 pixel1:(jint)pixel1
212 pixel2:(jint)pixel2
213 {
214 //TODO Resolve gradient distribution problem
215 //TODO Implement useMask
216 //TODO Implement cyclic
217 //fprintf(stderr,
218 // "MTLPaints_SetGradientPaint useMask=%d cyclic=%d "
219 // "p0=%f p1=%f p3=%f pix1=%d pix2=%d\n", useMask, cyclic,
220 // p0, p1, p3, pixel1, pixel2);
221
222 _paintState = sun_java2d_SunGraphics2D_PAINT_GRADIENT;
223 _useMask = useMask;
224 _pixel1 = pixel1;
225 _pixel2 = pixel2;
226 _p0 = p0;
227 _p1 = p1;
228 _p3 = p3;
229 _cyclic = cyclic;
230 }
231
232 - (void)setLinearGradient:(jboolean)useMask
233 linear:(jboolean)linear
234 cycleMethod:(jboolean)cycleMethod
235 numStops:(jint)numStops
236 p0:(jfloat)p0
237 p1:(jfloat)p1
238 p3:(jfloat)p3
239 fractions:(void *)fractions
240 pixels:(void *)pixels
241 {
242 J2dTraceLn(J2D_TRACE_ERROR, "setLinearGradient: UNIMPLEMENTED");
243 [self setColor:0];
244 }
245
246 - (void)setRadialGradient:(jboolean)useMask
247 linear:(jboolean)linear
248 cycleMethod:(jboolean)cycleMethod
249 numStops:(jint)numStops
250 m00:(jfloat)m00
251 m01:(jfloat)m01
252 m02:(jfloat)m02
253 m10:(jfloat)m10
254 m11:(jfloat)m11
255 m12:(jfloat)m12
256 focusX:(jfloat)focusX
257 fractions:(void *)fractions
258 pixels:(void *)pixels
259 {
260 J2dTraceLn(J2D_TRACE_ERROR, "setRadialGradient: UNIMPLEMENTED");
261 [self setColor:0];
262 }
263
264 - (void)setTexture:(jboolean)useMask
265 textureID:(id<MTLTexture>)textureID
266 filter:(jboolean)filter
267 xp0:(jdouble)xp0
268 xp1:(jdouble)xp1
269 xp3:(jdouble)xp3
270 yp0:(jdouble)yp0
271 yp1:(jdouble)yp1
272 yp3:(jdouble)yp3
273 {
274 _paintState = sun_java2d_SunGraphics2D_PAINT_TEXTURE;
275 _paintTexture = textureID;
276
277 _anchor.xParams[0] = xp0;
278 _anchor.xParams[1] = xp1;
279 _anchor.xParams[2] = xp3;
280
281 _anchor.yParams[0] = yp0;
282 _anchor.yParams[1] = yp1;
283 _anchor.yParams[2] = yp3;
284 }
285
286 // For the current paint mode:
287 // 1. Selects vertex+fragment shaders (and corresponding pipelineDesc) and set pipelineState
288 // 2. Set vertex and fragment buffers
289 - (void)setPipelineState:(id<MTLRenderCommandEncoder>)encoder
290 composite:(MTLComposite *)composite
291 isStencilUsed:(jboolean)isStencilUsed
292 isTexture:(jboolean)isTexture
293 isAA:(jboolean)isAA
294 srcFlags:(const SurfaceRasterFlags *)srcFlags
295 dstFlags:(const SurfaceRasterFlags *)dstFlags
296 pipelineStateStorage:(MTLPipelineStatesStorage *)pipelineStateStorage
297 {
298 initTemplatePipelineDescriptors();
299
300 const bool stencil = isStencilUsed == JNI_TRUE;
301
302 id<MTLRenderPipelineState> pipelineState = nil;
303 if (isTexture) {
304
305 if (_paintState == sun_java2d_SunGraphics2D_PAINT_TEXTURE) {
306 pipelineState = [pipelineStateStorage getPipelineState:templateTexturePipelineDesc
307 vertexShaderId:@"vert_txt_tp"
308 fragmentShaderId:@"frag_txt_tp"
309 compositeRule:[composite getRule]
310 isAA:JNI_FALSE
311 srcFlags:srcFlags
312 dstFlags:dstFlags
313 stencilNeeded:stencil];
314 [encoder setVertexBytes:&_anchor length:sizeof(_anchor) atIndex:FrameUniformBuffer];
315 [encoder setFragmentTexture:_paintTexture atIndex: 1];
316
317 struct TxtFrameUniforms uf = {RGBA_TO_V4(0), 0, srcFlags->isOpaque,
318 dstFlags->isOpaque, [composite getExtraAlpha]};
319 [encoder setFragmentBytes:&uf length:sizeof(uf)
320 atIndex:FrameUniformBuffer];
321
322 } else if (_paintState == sun_java2d_SunGraphics2D_PAINT_GRADIENT) {
323 pipelineState = [pipelineStateStorage getPipelineState:templateTexturePipelineDesc
324 vertexShaderId:@"vert_txt_grad"
325 fragmentShaderId:@"frag_txt_grad"
326 compositeRule:[composite getRule]
327 isAA:JNI_FALSE
328 srcFlags:srcFlags
329 dstFlags:dstFlags
330 stencilNeeded:stencil];
331 struct GradFrameUniforms uf = {
332 {_p0, _p1, _p3},
333 RGBA_TO_V4(_pixel1),
334 RGBA_TO_V4(_pixel2)};
335 [encoder setFragmentBytes: &uf length:sizeof(uf) atIndex:0];
336
337 } else {
338 if (isAA) {
339 pipelineState = [pipelineStateStorage
340 getPipelineState:templateAATexturePipelineDesc
341 vertexShaderId:@"vert_txt"
342 fragmentShaderId:@"aa_frag_txt"
343 compositeRule:[composite getRule]
344 isAA:JNI_FALSE
345 srcFlags:srcFlags
346 dstFlags:dstFlags
347 stencilNeeded:stencil];
348
349 } else {
350 pipelineState =
351 [pipelineStateStorage getPipelineState:templateTexturePipelineDesc
352 vertexShaderId:@"vert_txt"
353 fragmentShaderId:@"frag_txt"
354 compositeRule:[composite getRule]
355 composite:composite
356 isAA:JNI_FALSE
357 srcFlags:srcFlags
358 dstFlags:dstFlags
359 stencilNeeded:stencil];
360 }
361
362 if (_paintState == sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR) {
363 struct TxtFrameUniforms uf = {RGBA_TO_V4(_color), 1,
364 srcFlags->isOpaque, dstFlags->isOpaque, [composite getExtraAlpha]};
365 [encoder setFragmentBytes:&uf length:sizeof(uf) atIndex:FrameUniformBuffer];
366 } else {
367 struct TxtFrameUniforms uf = {RGBA_TO_V4(0), 0,
368 srcFlags->isOpaque, dstFlags->isOpaque, [composite getExtraAlpha]};
369 [encoder setFragmentBytes:&uf length:sizeof(uf) atIndex:FrameUniformBuffer];
370 }
371 }
372 } else {
373 if (_paintState == sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR) {
374 pipelineState = [pipelineStateStorage getPipelineState:templateRenderPipelineDesc
375 vertexShaderId:@"vert_col"
376 fragmentShaderId:@"frag_col"
377 compositeRule:[composite getRule]
378 isAA:isAA
379 srcFlags:srcFlags
380 dstFlags:dstFlags
381 stencilNeeded:stencil];
382
383 struct FrameUniforms uf = {RGBA_TO_V4(_color)};
384 [encoder setVertexBytes:&uf length:sizeof(uf) atIndex:FrameUniformBuffer];
385 } else if (_paintState == sun_java2d_SunGraphics2D_PAINT_GRADIENT) {
386 pipelineState = [pipelineStateStorage getPipelineState:templateRenderPipelineDesc
387 vertexShaderId:@"vert_grad"
388 fragmentShaderId:@"frag_grad"
389 compositeRule:[composite getRule]
390 isAA:isAA
391 srcFlags:srcFlags
392 dstFlags:dstFlags
393 stencilNeeded:stencil];
394
395 struct GradFrameUniforms uf = {
396 {_p0, _p1, _p3},
397 RGBA_TO_V4(_pixel1),
398 RGBA_TO_V4(_pixel2)};
399 [encoder setFragmentBytes: &uf length:sizeof(uf) atIndex:0];
400 } else if (_paintState == sun_java2d_SunGraphics2D_PAINT_TEXTURE) {
401 pipelineState = [pipelineStateStorage getPipelineState:templateRenderPipelineDesc
402 vertexShaderId:@"vert_tp"
403 fragmentShaderId:@"frag_tp"
404 compositeRule:[composite getRule]
405 isAA:isAA
406 srcFlags:srcFlags
407 dstFlags:dstFlags
408 stencilNeeded:stencil];
409
410 [encoder setVertexBytes:&_anchor length:sizeof(_anchor) atIndex:FrameUniformBuffer];
411 [encoder setFragmentTexture:_paintTexture atIndex: 0];
412 }
413 }
414
415 [encoder setRenderPipelineState:pipelineState];
416 }
417
418
419 // For the current paint mode: and for XOR composite - a separate method is added as fragment shader differ in some cases
420 // 1. Selects vertex+fragment shaders (and corresponding pipelineDesc) and set pipelineState
421 // 2. Set vertex and fragment buffers
422 - (void)setXorModePipelineState:(id<MTLRenderCommandEncoder>)encoder
423 composite:(MTLComposite *)composite
424 isStencilUsed:(jboolean)isStencilUsed
425 isTexture:(jboolean)isTexture
426 srcFlags:(const SurfaceRasterFlags *)srcFlags
427 dstFlags:(const SurfaceRasterFlags *)dstFlags
428 pipelineStateStorage:(MTLPipelineStatesStorage *)pipelineStateStorage {
429 initTemplatePipelineDescriptors();
430
431 const bool stencil = isStencilUsed == JNI_TRUE;
432 jint xorColor = (jint) [composite getXorColor];
433
434 id<MTLRenderPipelineState> pipelineState = nil;
435 if (isTexture) {
436 pipelineState = [pipelineStateStorage getXorModePipelineState:templateTexturePipelineDesc
437 vertexShaderId:@"vert_txt"
438 fragmentShaderId:@"frag_txt"
439 srcFlags:srcFlags
440 dstFlags:dstFlags
441 stencilNeeded:stencil];
442
443 if (_paintState == sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR) {
444 struct TxtFrameUniforms uf = {RGBA_TO_V4(_color ^ xorColor), 1,
445 srcFlags->isOpaque, dstFlags->isOpaque, [composite getExtraAlpha]};
446 [encoder setFragmentBytes:&uf length:sizeof(uf) atIndex:FrameUniformBuffer];
447 } else {
448 struct TxtFrameUniforms uf = {RGBA_TO_V4(0 ^ xorColor), 0,
449 srcFlags->isOpaque, dstFlags->isOpaque, [composite getExtraAlpha]};
450 [encoder setFragmentBytes:&uf length:sizeof(uf) atIndex:FrameUniformBuffer];
451 }
452 [encoder setFragmentBytes:&xorColor length:sizeof(xorColor) atIndex: 0];
453 } else {
454 if (_paintState == sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR) {
455
456 pipelineState = [pipelineStateStorage getXorModePipelineState:templateRenderPipelineDesc
457 vertexShaderId:@"vert_col"
458 fragmentShaderId:@"frag_col"
459 srcFlags:srcFlags
460 dstFlags:dstFlags
461 stencilNeeded:stencil];
462
463 // Calculate _color ^ xorColor for RGB components
464 // This color gets XORed with destination framebuffer pixel color
465 struct FrameUniforms uf = {RGBA_TO_V4(_color ^ xorColor)};
466 [encoder setVertexBytes:&uf length:sizeof(uf) atIndex:FrameUniformBuffer];
467
468 } else if (_paintState == sun_java2d_SunGraphics2D_PAINT_GRADIENT) {
469
470 pipelineState = [pipelineStateStorage getXorModePipelineState:templateRenderPipelineDesc
471 vertexShaderId:@"vert_grad"
472 fragmentShaderId:@"frag_grad"
473 srcFlags:srcFlags
474 dstFlags:dstFlags
475 stencilNeeded:stencil];
476
477 struct GradFrameUniforms uf = {
478 {_p0, _p1, _p3},
479 RGBA_TO_V4(_pixel1 ^ xorColor),
480 RGBA_TO_V4(_pixel2 ^ xorColor)};
481 [encoder setFragmentBytes: &uf length:sizeof(uf) atIndex:0];
482 } else if (_paintState == sun_java2d_SunGraphics2D_PAINT_TEXTURE) {
483
484 pipelineState = [pipelineStateStorage getXorModePipelineState:templateRenderPipelineDesc
485 vertexShaderId:@"vert_tp"
486 fragmentShaderId:@"frag_tp_xorMode"
487 srcFlags:srcFlags
488 dstFlags:dstFlags
489 stencilNeeded:stencil];
490
491 [encoder setVertexBytes:&_anchor length:sizeof(_anchor) atIndex:FrameUniformBuffer];
492 [encoder setFragmentTexture:_paintTexture atIndex: 0];
493 [encoder setFragmentBytes:&xorColor length:sizeof(xorColor) atIndex: 0];
494 }
495 }
496 [encoder setRenderPipelineState:pipelineState];
497 }
498
499 @end
500
501 /************************* GradientPaint support ****************************/
502
503 static void
504 MTLPaints_InitGradientTexture()
505 {
506 //TODO
507 J2dTraceLn(J2D_TRACE_INFO, "MTLPaints_InitGradientTexture -- :TODO");
508 }
509
510 /****************** Shared MultipleGradientPaint support ********************/
511
512 /**
513 * These constants are identical to those defined in the
514 * MultipleGradientPaint.CycleMethod enum; they are copied here for
515 * convenience (ideally we would pull them directly from the Java level,
516 * but that entails more hassle than it is worth).
517 */
518 #define CYCLE_NONE 0
519 #define CYCLE_REFLECT 1
520 #define CYCLE_REPEAT 2
521
522 /**
523 * The following constants are flags that can be bitwise-or'ed together
524 * to control how the MultipleGradientPaint shader source code is generated:
525 *
526 * MULTI_CYCLE_METHOD
527 * Placeholder for the CycleMethod enum constant.
528 *
529 * MULTI_LARGE
530 * If set, use the (slower) shader that supports a larger number of
531 * gradient colors; otherwise, use the optimized codepath. See
532 * the MAX_FRACTIONS_SMALL/LARGE constants below for more details.
533 *
534 * MULTI_USE_MASK
535 * If set, apply the alpha mask value from texture unit 0 to the
536 * final color result (only used in the MaskFill case).
537 *
538 * MULTI_LINEAR_RGB
539 * If set, convert the linear RGB result back into the sRGB color space.
540 */
541 #define MULTI_CYCLE_METHOD (3 << 0)
542 #define MULTI_LARGE (1 << 2)
543 #define MULTI_USE_MASK (1 << 3)
544 #define MULTI_LINEAR_RGB (1 << 4)
545
546 /**
547 * This value determines the size of the array of programs for each
548 * MultipleGradientPaint type. This value reflects the maximum value that
549 * can be represented by performing a bitwise-or of all the MULTI_*
550 * constants defined above.
551 */
552 #define MAX_PROGRAMS 32
553
554 /** Evaluates to true if the given bit is set on the local flags variable. */
555 #define IS_SET(flagbit) \
556 (((flags) & (flagbit)) != 0)
557
558 /** Composes the given parameters as flags into the given flags variable.*/
559 #define COMPOSE_FLAGS(flags, cycleMethod, large, useMask, linear) \
560 do { \
561 flags |= ((cycleMethod) & MULTI_CYCLE_METHOD); \
562 if (large) flags |= MULTI_LARGE; \
563 if (useMask) flags |= MULTI_USE_MASK; \
564 if (linear) flags |= MULTI_LINEAR_RGB; \
565 } while (0)
566
567 /** Extracts the CycleMethod enum value from the given flags variable. */
568 #define EXTRACT_CYCLE_METHOD(flags) \
569 ((flags) & MULTI_CYCLE_METHOD)
570
571 /**
572 * The maximum number of gradient "stops" supported by the fragment shader
573 * and related code. When the MULTI_LARGE flag is set, we will use
574 * MAX_FRACTIONS_LARGE; otherwise, we use MAX_FRACTIONS_SMALL. By having
575 * two separate values, we can have one highly optimized shader (SMALL) that
576 * supports only a few fractions/colors, and then another, less optimal
577 * shader that supports more stops.
578 */
579 #define MAX_FRACTIONS sun_java2d_pipe_BufferedPaints_MULTI_MAX_FRACTIONS
580 #define MAX_FRACTIONS_LARGE MAX_FRACTIONS
581 #define MAX_FRACTIONS_SMALL 4
582
583 /**
584 * The maximum number of gradient colors supported by all of the gradient
585 * fragment shaders. Note that this value must be a power of two, as it
586 * determines the size of the 1D texture created below. It also must be
587 * greater than or equal to MAX_FRACTIONS (there is no strict requirement
588 * that the two values be equal).
589 */
590 #define MAX_COLORS 16
591
592 /**
593 * The handle to the gradient color table texture object used by the shaders.
594 */
595 static jint multiGradientTexID = 0;
596
597 /**
598 * This is essentially a template of the shader source code that can be used
599 * for either LinearGradientPaint or RadialGradientPaint. It includes the
600 * structure and some variables that are common to each; the remaining
601 * code snippets (for CycleMethod, ColorSpaceType, and mask modulation)
602 * are filled in prior to compiling the shader at runtime depending on the
603 * paint parameters. See MTLPaints_CreateMultiGradProgram() for more details.
604 */
605 static const char *multiGradientShaderSource =
606 // gradient texture size (in texels)
607 "const int TEXTURE_SIZE = %d;"
608 // maximum number of fractions/colors supported by this shader
609 "const int MAX_FRACTIONS = %d;"
610 // size of a single texel
611 "const float FULL_TEXEL = (1.0 / float(TEXTURE_SIZE));"
612 // size of half of a single texel
613 "const float HALF_TEXEL = (FULL_TEXEL / 2.0);"
614 // texture containing the gradient colors
615 "uniform sampler1D colors;"
616 // array of gradient stops/fractions
617 "uniform float fractions[MAX_FRACTIONS];"
618 // array of scale factors (one for each interval)
619 "uniform float scaleFactors[MAX_FRACTIONS-1];"
620 // (placeholder for mask variable)
621 "%s"
622 // (placeholder for Linear/RadialGP-specific variables)
623 "%s"
624 ""
625 "void main(void)"
626 "{"
627 " float dist;"
628 // (placeholder for Linear/RadialGradientPaint-specific code)
629 " %s"
630 ""
631 " float tc;"
632 // (placeholder for CycleMethod-specific code)
633 " %s"
634 ""
635 // calculate interpolated color
636 " vec4 result = texture1D(colors, tc);"
637 ""
638 // (placeholder for ColorSpace conversion code)
639 " %s"
640 ""
641 // (placeholder for mask modulation code)
642 " %s"
643 ""
644 // modulate with gl_Color in order to apply extra alpha
645 " gl_FragColor = result * gl_Color;"
646 "}";
647
648 /**
649 * This code takes a "dist" value as input (as calculated earlier by the
650 * LGP/RGP-specific code) in the range [0,1] and produces a texture
651 * coordinate value "tc" that represents the position of the chosen color
652 * in the one-dimensional gradient texture (also in the range [0,1]).
653 *
654 * One naive way to implement this would be to iterate through the fractions
655 * to figure out in which interval "dist" falls, and then compute the
656 * relative distance between the two nearest stops. This approach would
657 * require an "if" check on every iteration, and it is best to avoid
658 * conditionals in fragment shaders for performance reasons. Also, one might
659 * be tempted to use a break statement to jump out of the loop once the
660 * interval was found, but break statements (and non-constant loop bounds)
661 * are not natively available on most graphics hardware today, so that is
662 * a non-starter.
663 *
664 * The more optimal approach used here avoids these issues entirely by using
665 * an accumulation function that is equivalent to the process described above.
666 * The scaleFactors array is pre-initialized at enable time as follows:
667 * scaleFactors[i] = 1.0 / (fractions[i+1] - fractions[i]);
668 *
669 * For each iteration, we subtract fractions[i] from dist and then multiply
670 * that value by scaleFactors[i]. If we are within the target interval,
671 * this value will be a fraction in the range [0,1] indicating the relative
672 * distance between fraction[i] and fraction[i+1]. If we are below the
673 * target interval, this value will be negative, so we clamp it to zero
674 * to avoid accumulating any value. If we are above the target interval,
675 * the value will be greater than one, so we clamp it to one. Upon exiting
676 * the loop, we will have accumulated zero or more 1.0's and a single
677 * fractional value. This accumulated value tells us the position of the
678 * fragment color in the one-dimensional gradient texture, i.e., the
679 * texcoord called "tc".
680 */
681 static const char *texCoordCalcCode =
682 "int i;"
683 "float relFraction = 0.0;"
684 "for (i = 0; i < MAX_FRACTIONS-1; i++) {"
685 " relFraction +="
686 " clamp((dist - fractions[i]) * scaleFactors[i], 0.0, 1.0);"
687 "}"
688 // we offset by half a texel so that we find the linearly interpolated
689 // color between the two texel centers of interest
690 "tc = HALF_TEXEL + (FULL_TEXEL * relFraction);";
691
692 /** Code for NO_CYCLE that gets plugged into the CycleMethod placeholder. */
693 static const char *noCycleCode =
694 "if (dist <= 0.0) {"
695 " tc = 0.0;"
696 "} else if (dist >= 1.0) {"
697 " tc = 1.0;"
698 "} else {"
699 // (placeholder for texcoord calculation)
700 " %s"
701 "}";
702
703 /** Code for REFLECT that gets plugged into the CycleMethod placeholder. */
704 static const char *reflectCode =
705 "dist = 1.0 - (abs(fract(dist * 0.5) - 0.5) * 2.0);"
706 // (placeholder for texcoord calculation)
707 "%s";
708
709 /** Code for REPEAT that gets plugged into the CycleMethod placeholder. */
710 static const char *repeatCode =
711 "dist = fract(dist);"
712 // (placeholder for texcoord calculation)
713 "%s";
714
715 static void
716 MTLPaints_InitMultiGradientTexture()
717 {
718 J2dTraceLn(J2D_TRACE_INFO, "MTLPaints_InitMultiGradientTexture -- :TODO");
719 }
720
721 /**
722 * Compiles and links the MultipleGradientPaint shader program. If
723 * successful, this function returns a handle to the newly created
724 * shader program; otherwise returns 0.
725 */
726 static void*
727 MTLPaints_CreateMultiGradProgram(jint flags,
728 char *paintVars, char *distCode)
729 {
730
731 //TODO
732 J2dTraceLn(J2D_TRACE_INFO, "MTLPaints_CreateMultiGradProgram -- :TODO");
733
734 return NULL;
735 }
736
737 /**
738 * Called from the MTLPaints_SetLinear/RadialGradientPaint() methods
739 * in order to setup the fraction/color values that are common to both.
740 */
741 static void
742 MTLPaints_SetMultiGradientPaint(void* multiGradProgram,
743 jint numStops,
744 void *pFractions, void *pPixels)
745 {
746 //TODO
747 J2dTraceLn(J2D_TRACE_INFO, "MTLPaints_SetMultiGradientPaint -- :TODO");
748
749 }
750
751 /********************** LinearGradientPaint support *************************/
752
753 /**
754 * The handles to the LinearGradientPaint fragment program objects. The
755 * index to the array should be a bitwise-or'ing of the MULTI_* flags defined
756 * above. Note that most applications will likely need to initialize one
757 * or two of these elements, so the array is usually sparsely populated.
758 */
759 static void* linearGradPrograms[MAX_PROGRAMS];
760
761 /**
762 * Compiles and links the LinearGradientPaint shader program. If successful,
763 * this function returns a handle to the newly created shader program;
764 * otherwise returns 0.
765 */
766 static void*
767 MTLPaints_CreateLinearGradProgram(jint flags)
768 {
769 char *paintVars;
770 char *distCode;
771
772 J2dTraceLn1(J2D_TRACE_INFO,
773 "MTLPaints_CreateLinearGradProgram",
774 flags);
775
776 /*
777 * To simplify the code and to make it easier to upload a number of
778 * uniform values at once, we pack a bunch of scalar (float) values
779 * into vec3 values below. Here's how the values are related:
780 *
781 * params.x = p0
782 * params.y = p1
783 * params.z = p3
784 *
785 * yoff = dstOps->yOffset + dstOps->height
786 */
787 paintVars =
788 "uniform vec3 params;"
789 "uniform float yoff;";
790 distCode =
791 // note that gl_FragCoord is in window space relative to the
792 // lower-left corner, so we have to flip the y-coordinate here
793 "vec3 fragCoord = vec3(gl_FragCoord.x, yoff-gl_FragCoord.y, 1.0);"
794 "dist = dot(params, fragCoord);";
795
796 return MTLPaints_CreateMultiGradProgram(flags, paintVars, distCode);
797 }
798
799 /********************** RadialGradientPaint support *************************/
800
801 /**
802 * The handles to the RadialGradientPaint fragment program objects. The
803 * index to the array should be a bitwise-or'ing of the MULTI_* flags defined
804 * above. Note that most applications will likely need to initialize one
805 * or two of these elements, so the array is usually sparsely populated.
806 */
807 static void* radialGradPrograms[MAX_PROGRAMS];
808
809 /**
810 * Compiles and links the RadialGradientPaint shader program. If successful,
811 * this function returns a handle to the newly created shader program;
812 * otherwise returns 0.
813 */
814 static void*
815 MTLPaints_CreateRadialGradProgram(jint flags)
816 {
817 char *paintVars;
818 char *distCode;
819
820 J2dTraceLn1(J2D_TRACE_INFO,
821 "MTLPaints_CreateRadialGradProgram",
822 flags);
823
824 /*
825 * To simplify the code and to make it easier to upload a number of
826 * uniform values at once, we pack a bunch of scalar (float) values
827 * into vec3 and vec4 values below. Here's how the values are related:
828 *
829 * m0.x = m00
830 * m0.y = m01
831 * m0.z = m02
832 *
833 * m1.x = m10
834 * m1.y = m11
835 * m1.z = m12
836 *
837 * precalc.x = focusX
838 * precalc.y = yoff = dstOps->yOffset + dstOps->height
839 * precalc.z = 1.0 - (focusX * focusX)
840 * precalc.w = 1.0 / precalc.z
841 */
842 paintVars =
843 "uniform vec3 m0;"
844 "uniform vec3 m1;"
845 "uniform vec4 precalc;";
846
847 /*
848 * The following code is derived from Daniel Rice's whitepaper on
849 * radial gradient performance (attached to the bug report for 6521533).
850 * Refer to that document as well as the setup code in the Java-level
851 * BufferedPaints.setRadialGradientPaint() method for more details.
852 */
853 distCode =
854 // note that gl_FragCoord is in window space relative to the
855 // lower-left corner, so we have to flip the y-coordinate here
856 "vec3 fragCoord ="
857 " vec3(gl_FragCoord.x, precalc.y - gl_FragCoord.y, 1.0);"
858 "float x = dot(fragCoord, m0);"
859 "float y = dot(fragCoord, m1);"
860 "float xfx = x - precalc.x;"
861 "dist = (precalc.x*xfx + sqrt(xfx*xfx + y*y*precalc.z))*precalc.w;";
862
863 return MTLPaints_CreateMultiGradProgram(flags, paintVars, distCode);
864 }
865
866 #endif /* !HEADLESS */